dc.creator | BANYAGA,AUGUSTIN | |
dc.date | 2010-01-01 | |
dc.date.accessioned | 2017-03-07T16:36:08Z | |
dc.date.available | 2017-03-07T16:36:08Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/404399 | |
dc.description | We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω). | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad de La Frontera. Departamento de Matemática y Estadística | |
dc.publisher | Universidade Federal de Pernambuco. Departamento de Matemática | |
dc.source | Cubo (Temuco) v.12 n.3 2010 | |
dc.subject | Hamiltonian homeomorphisms | |
dc.subject | hamiltonian topology | |
dc.subject | symplectic topology | |
dc.subject | stromg symplectic homeomorphisms | |
dc.subject | C0 symplectic topology | |
dc.title | On The Group of Strong Symplectic Homeomorphisms | |
dc.type | Artículos de revistas | |