dc.creatorBANYAGA,AUGUSTIN
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:36:08Z
dc.date.available2017-03-07T16:36:08Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404399
dc.descriptionWe generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.3 2010
dc.subjectHamiltonian homeomorphisms
dc.subjecthamiltonian topology
dc.subjectsymplectic topology
dc.subjectstromg symplectic homeomorphisms
dc.subjectC0 symplectic topology
dc.titleOn The Group of Strong Symplectic Homeomorphisms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución