dc.contributorWinck, Ana Trindade
dc.creatorViana, Matheus Miller de Campos
dc.date.accessioned2022-06-24T18:22:01Z
dc.date.accessioned2022-10-07T22:56:44Z
dc.date.available2022-06-24T18:22:01Z
dc.date.available2022-10-07T22:56:44Z
dc.date.created2022-06-24T18:22:01Z
dc.date.issued2013-02-20
dc.identifierhttp://repositorio.ufsm.br/handle/1/25085
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4038817
dc.description.abstractThe increasing amount of textual documents, especially those related to biomedical literature, has encouraged many researches in Text Mining. One important field of investigation relates to Named Entities Recognition (NER), where Named Entities (NE) are referred terms or objects in a given context. In the biomedical domain, diseases and treatments can be cited as examples of NE. The recognition of biomedical NE has become a challenge, since biomedical corpora have particular characteristics, mainly because a given biological object can be often represented in different terminological ways. Among the different methods of NER, one of them is the recognition through the context. In this work is proposed a Decision-Tree Model-based approach for NER in biomedical literature.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherUFSM
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcesso Aberto
dc.subjectMineração de textos
dc.subjectÁrvore de decisão
dc.subjectReconhecimento de entidades nomeadas
dc.subjectText mining
dc.subjectDecision tree
dc.subjectNamed entities recognition
dc.titleIndução de modelos de árvore de decisão para reconhecimento de entidades nomeadas na literatura biomédica
dc.typeTrabalho de Conclusão de Curso de Graduação


Este ítem pertenece a la siguiente institución