dc.contributorSouza, Adriano Mendonça
dc.contributorhttp://lattes.cnpq.br/5271075797851198
dc.contributorBisognin, Cleber
dc.contributorZanini, Roselaine Ruviaro
dc.creatorSilva, Caroline Pafiadache da
dc.date.accessioned2021-08-24T17:40:22Z
dc.date.accessioned2022-10-07T22:32:03Z
dc.date.available2021-08-24T17:40:22Z
dc.date.available2022-10-07T22:32:03Z
dc.date.created2021-08-24T17:40:22Z
dc.date.issued2014-03-07
dc.identifierhttp://repositorio.ufsm.br/handle/1/22046
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4037528
dc.description.abstractThe analysis of time series obtained in the databases of public health plays an important role in processes of health surveillance. However, implementation of methodologies for time series has not yet become a routine in the midst of healthcare practitioners. The objective of this study is to present a theoretical review about time series analysis used for epidemiological surveillance data and practical application of statistical methods for the estimation of three models for notifiable diseases: the Box and Jenkins methodological in the presence and absence of exogenous variable (ARIMAX and ARIMA) and vector autoregression (VAR) model. For this, we perfomed a cross-sectional study using secondary data from SINAN (Information System for Notifiable Diseases) consisting of cases of hepatitis A and leptospirosis recorded in Rio Grande do Sul, in the period January 2008 to December 2012. The models were analyzed and discussed through comparison of performance measures. The ARIMA models presented the best properties for the prediction of new cases of the diseases studied. The one-way causality between the diseases was also established.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherEngenharia de Produção
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Engenharia de Produção
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectVigilância epidemiológica
dc.subjectSéries temporais
dc.subjectModelo ARIMA
dc.subjectModelo ARMAX
dc.subjectModelo VAR
dc.subjectVAR model
dc.subjectEpidemiological surveillance
dc.subjectTime series
dc.subjectARIMA model
dc.subjectARIMAX model
dc.titleAnálise de dados de vigilância epidemiológica por meio de diferentes tipos de modelos de séries temporais
dc.typeDissertação


Este ítem pertenece a la siguiente institución