dc.creatorGlüge,Rainer
dc.date2010-12-01
dc.date.accessioned2017-03-07T16:33:02Z
dc.date.available2017-03-07T16:33:02Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052010000300013
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/403470
dc.descriptionA sparse matrix bandwidth reduction method is analyzed. It consists of equation splitting, substitution and introducing new variables, similar to the substructure decomposition in the finite element method (FEM). It is especially useful when the bandwidth cannot be reduced by strategically interchanging columns and rows. In such cases, equation splitting and successive reordering can further reduce the bandwidth, at cost of introducing new variables. While the substructure decomposition is carried out before the system matrix is built, the given approach is applied afterwards, independently on the origin of the linear system. It is successfully applied to a sparse matrix, the bandwidth of which cannot be reduced by reordering. For the exemplary FEM simulation, an increase of performance of the direct solver is obtaine.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de Tarapacá.
dc.sourceIngeniare. Revista chilena de ingeniería v.18 n.3 2010
dc.subjectSparse matrix
dc.subjectbandwidth
dc.subjectrepresentative volume element (RVE)
dc.subjecthomogenization
dc.subjectkinematic minimal boundary conditions
dc.titleBANDWIDTH REDUCTION ON SPARSE MATRICES BY INTRODUCING NEW VARIABLES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución