dc.contributor | Klaser, Patricia Kruse | |
dc.contributor | http://lattes.cnpq.br/4727436517205894 | |
dc.contributor | Telichevesky, Miriam | |
dc.contributor | http://lattes.cnpq.br/5493009948924493 | |
dc.contributor | Aiolfi, Arì João | |
dc.contributor | http://lattes.cnpq.br/9611448710306976 | |
dc.creator | Abé, Stephanie | |
dc.date.accessioned | 2019-11-21T14:17:12Z | |
dc.date.accessioned | 2022-10-07T21:55:36Z | |
dc.date.available | 2019-11-21T14:17:12Z | |
dc.date.available | 2022-10-07T21:55:36Z | |
dc.date.created | 2019-11-21T14:17:12Z | |
dc.date.issued | 2019-05-20 | |
dc.identifier | http://repositorio.ufsm.br/handle/1/19003 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4032812 | |
dc.description.abstract | In this work, we will show that for each H such that AH2 < 2 , where A represents the
area of
and = p5−1
2 , the Dirichlet problem
(PD)H8>
<>
:
div ru p1+|ru|2 = −2H em
u = 0 em @
,
is solvable, for
R2 a bounded convex domain. For this, we use the Continuity Method
and study elliptic PDEs.
Keywords: cmc surfaces, Dirichlet problem, Continuity Method, a priori estimate. | |
dc.publisher | Universidade Federal de Santa Maria | |
dc.publisher | Brasil | |
dc.publisher | Matemática | |
dc.publisher | UFSM | |
dc.publisher | Programa de Pós-Graduação em Matemática | |
dc.publisher | Centro de Ciências Naturais e Exatas | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.subject | Superfícies cmc | |
dc.subject | Problema de Dirichlet | |
dc.subject | Método da continuidade | |
dc.subject | Estimativa a priori | |
dc.subject | cmc surfaces | |
dc.subject | Dirichlet problem | |
dc.subject | A priori estimate | |
dc.subject | Continuity method | |
dc.title | Superfícies de curvatura média constante com bordo plano em R3 | |
dc.type | Dissertação | |