dc.contributorMergen, Sergio Luis Sardi
dc.creatorRodrigues, Vinicius Aquino
dc.date.accessioned2022-06-14T15:18:56Z
dc.date.accessioned2022-10-07T21:55:04Z
dc.date.available2022-06-14T15:18:56Z
dc.date.available2022-10-07T21:55:04Z
dc.date.created2022-06-14T15:18:56Z
dc.date.issued2016-12-14
dc.identifierhttp://repositorio.ufsm.br/handle/1/24801
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4032714
dc.description.abstractA research area that has been gaining space is the discovery of trending topics from data published on the Web. Some works perform the discovery process using relatively complex algorithms based on machine learning or using large volume of data gathered from internal databases. The purpose of this work is to show that it is possible to discover relevant topics through simple strategies and analyzing a small amount of information. To achieve this goal, we propose a tool called SE Trends (Search Engine Trends), which delegates the time consuming processing to a search engine. The tool applies information recovery techniques over pages returned from queries submitted to a search engine. Each term found is classified according to its importance, and the best classified terms are considered the most important topics. The experiments show scenarios where SE Trends returns terms that are indeed associated with issues of national concern.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherUFSM
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcesso Aberto
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectRecuperação de informação
dc.subjectPalavras tendência
dc.subjectProcessamento de texto
dc.subjectNuvem de palavras
dc.subjectParsing
dc.titleSumarizando informações na web através da identificação de tendências
dc.typeTrabalho de Conclusão de Curso de Graduação


Este ítem pertenece a la siguiente institución