dc.contributorSilva, Luís Alvaro de Lima
dc.creatorNeisse, Claiton
dc.date.accessioned2021-07-08T12:31:16Z
dc.date.accessioned2022-10-07T21:53:49Z
dc.date.available2021-07-08T12:31:16Z
dc.date.available2022-10-07T21:53:49Z
dc.date.created2021-07-08T12:31:16Z
dc.date.issued2021-02-09
dc.identifierhttp://repositorio.ufsm.br/handle/1/21342
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4032477
dc.description.abstractDeep neural networks and pathfinding algorithms have been investigated in the area of Artificial Intelligence (AI). Despite this, these areas of research still require greater integration, mainly with a view to proposing pathfinding algorithms that explore relief information in route computations with lower distances and topographic costs. This work uses techniques of deep neural networks in the construction of heuristic functions used in the optimization of pathfinding algorithms that explore elevation and inclination represented in large virtual maps. Experiments compared such heuristics with traditional heuristics in the execution of the A pathfinding algorithm. Results showed that the use of deep neural networks can reduce the computational cost of the pathfinding algorithm in virtual maps containing topographic information.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherUFSM
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcesso Aberto
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectBusca de caminhos
dc.subjectInteligência artificial
dc.subjectRedes neurais profundas
dc.titleRedes neurais profundas na computação de heurísticas para algoritmos de busca de caminhos em mapas virtuais contendo elevação e inclinação
dc.typeTrabalho de Conclusão de Curso de Graduação


Este ítem pertenece a la siguiente institución