doctoralThesis
Investigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo
Fecha
2012-05-25Registro en:
SANTOS, Araken de Medeiros. Investigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo. 2012. 214 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
Autor
Santos, Araken de Medeiros
Resumen
Data classification is a task with high applicability in a lot of areas. Most methods for treating classification problems found in the literature dealing with single-label or traditional
problems. In recent years has been identified a series of classification tasks in which the samples can be labeled at more than one class simultaneously (multi-label classification). Additionally, these classes can be hierarchically organized (hierarchical classification and hierarchical multi-label classification). On the other hand, we have also studied a new category of learning, called semi-supervised learning, combining labeled data (supervised
learning) and non-labeled data (unsupervised learning) during the training phase, thus reducing the need for a large amount of labeled data when only a small set of labeled samples
is available. Thus, since both the techniques of multi-label and hierarchical multi-label classification as semi-supervised learning has shown favorable results with its use, this work
is proposed and used to apply semi-supervised learning in hierarchical multi-label classication tasks, so eciently take advantage of the main advantages of the two areas. An
experimental analysis of the proposed methods found that the use of semi-supervised learning in hierarchical multi-label methods presented satisfactory results, since the two
approaches were statistically similar results