dc.contributor | Canuto, Anne Magaly de Paula | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/8059198436766378 | |
dc.contributor | | |
dc.contributor | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8 | |
dc.contributor | Bedregal, Benjamin René Callejas | |
dc.contributor | | |
dc.contributor | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781417E7 | |
dc.contributor | Dória Neto, Adrião Duarte | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/1987295209521433 | |
dc.contributor | Carvalho, André Carlos Ponce de Leon Ferreira de | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/9674541381385819 | |
dc.contributor | Pappa, Gisele Lobo | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/5936682335701497 | |
dc.creator | Santos, Araken de Medeiros | |
dc.date.accessioned | 2012-11-21 | |
dc.date.accessioned | 2015-03-03T15:48:39Z | |
dc.date.accessioned | 2022-10-06T13:55:43Z | |
dc.date.available | 2012-11-21 | |
dc.date.available | 2015-03-03T15:48:39Z | |
dc.date.available | 2022-10-06T13:55:43Z | |
dc.date.created | 2012-11-21 | |
dc.date.created | 2015-03-03T15:48:39Z | |
dc.date.issued | 2012-05-25 | |
dc.identifier | SANTOS, Araken de Medeiros. Investigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo. 2012. 214 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012. | |
dc.identifier | https://repositorio.ufrn.br/jspui/handle/123456789/18690 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3973756 | |
dc.description.abstract | Data classification is a task with high applicability in a lot of areas. Most methods for treating classification problems found in the literature dealing with single-label or traditional
problems. In recent years has been identified a series of classification tasks in which the samples can be labeled at more than one class simultaneously (multi-label classification). Additionally, these classes can be hierarchically organized (hierarchical classification and hierarchical multi-label classification). On the other hand, we have also studied a new category of learning, called semi-supervised learning, combining labeled data (supervised
learning) and non-labeled data (unsupervised learning) during the training phase, thus reducing the need for a large amount of labeled data when only a small set of labeled samples
is available. Thus, since both the techniques of multi-label and hierarchical multi-label classification as semi-supervised learning has shown favorable results with its use, this work
is proposed and used to apply semi-supervised learning in hierarchical multi-label classication tasks, so eciently take advantage of the main advantages of the two areas. An
experimental analysis of the proposed methods found that the use of semi-supervised learning in hierarchical multi-label methods presented satisfactory results, since the two
approaches were statistically similar results | |
dc.publisher | Universidade Federal do Rio Grande do Norte | |
dc.publisher | BR | |
dc.publisher | UFRN | |
dc.publisher | Programa de Pós-Graduação em Sistemas e Computação | |
dc.publisher | Ciência da Computação | |
dc.rights | Acesso Aberto | |
dc.subject | Classificação multirrótulo | |
dc.subject | Classificação hierárquica multirrótulo | |
dc.subject | Aprendizado semissupervisionado | |
dc.subject | Multi-label classification | |
dc.subject | Hierarchical multi-label classification | |
dc.subject | Semi-supervised learning | |
dc.title | Investigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo | |
dc.type | doctoralThesis | |