dc.contributorCanuto, Anne Magaly de Paula
dc.contributor
dc.contributorhttp://lattes.cnpq.br/8059198436766378
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8
dc.contributorBedregal, Benjamin René Callejas
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781417E7
dc.contributorDória Neto, Adrião Duarte
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1987295209521433
dc.contributorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/9674541381385819
dc.contributorPappa, Gisele Lobo
dc.contributor
dc.contributorhttp://lattes.cnpq.br/5936682335701497
dc.creatorSantos, Araken de Medeiros
dc.date.accessioned2012-11-21
dc.date.accessioned2015-03-03T15:48:39Z
dc.date.accessioned2022-10-06T13:55:43Z
dc.date.available2012-11-21
dc.date.available2015-03-03T15:48:39Z
dc.date.available2022-10-06T13:55:43Z
dc.date.created2012-11-21
dc.date.created2015-03-03T15:48:39Z
dc.date.issued2012-05-25
dc.identifierSANTOS, Araken de Medeiros. Investigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo. 2012. 214 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/18690
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3973756
dc.description.abstractData classification is a task with high applicability in a lot of areas. Most methods for treating classification problems found in the literature dealing with single-label or traditional problems. In recent years has been identified a series of classification tasks in which the samples can be labeled at more than one class simultaneously (multi-label classification). Additionally, these classes can be hierarchically organized (hierarchical classification and hierarchical multi-label classification). On the other hand, we have also studied a new category of learning, called semi-supervised learning, combining labeled data (supervised learning) and non-labeled data (unsupervised learning) during the training phase, thus reducing the need for a large amount of labeled data when only a small set of labeled samples is available. Thus, since both the techniques of multi-label and hierarchical multi-label classification as semi-supervised learning has shown favorable results with its use, this work is proposed and used to apply semi-supervised learning in hierarchical multi-label classication tasks, so eciently take advantage of the main advantages of the two areas. An experimental analysis of the proposed methods found that the use of semi-supervised learning in hierarchical multi-label methods presented satisfactory results, since the two approaches were statistically similar results
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Sistemas e Computação
dc.publisherCiência da Computação
dc.rightsAcesso Aberto
dc.subjectClassificação multirrótulo
dc.subjectClassificação hierárquica multirrótulo
dc.subjectAprendizado semissupervisionado
dc.subjectMulti-label classification
dc.subjectHierarchical multi-label classification
dc.subjectSemi-supervised learning
dc.titleInvestigando a combinação de técnicas de aprendizado semissupervisionado e classificação hierárquica multirrótulo
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución