doctoralThesis
Otimização em comitês de classificadores: uma abordagem baseada em filtro para seleção de subconjuntos de atributos
Fecha
2012-02-02Registro en:
SANTANA, Laura Emmanuella Alves dos Santos. Otimização em comitês de classificadores: uma abordagem baseada em filtro para seleção de subconjuntos de atributos. 2012. 189 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
Autor
Santana, Laura Emmanuella Alves dos Santos
Resumen
Traditional applications of feature selection in areas such as data mining, machine learning
and pattern recognition aim to improve the accuracy and to reduce the computational
cost of the model. It is done through the removal of redundant, irrelevant or noisy data,
finding a representative subset of data that reduces its dimensionality without loss of performance.
With the development of research in ensemble of classifiers and the verification
that this type of model has better performance than the individual models, if the base
classifiers are diverse, comes a new field of application to the research of feature selection.
In this new field, it is desired to find diverse subsets of features for the construction of base
classifiers for the ensemble systems. This work proposes an approach that maximizes the
diversity of the ensembles by selecting subsets of features using a model independent of
the learning algorithm and with low computational cost. This is done using bio-inspired
metaheuristics with evaluation filter-based criteria