dc.contributorCanuto, Anne Magaly de Paula
dc.contributor
dc.contributorhttp://lattes.cnpq.br/8996581733787436
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8
dc.contributorDória Neto, Adrião Duarte
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1987295209521433
dc.contributorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/9674541381385819
dc.contributorGouvêa, Elizabeth Ferreira
dc.contributor
dc.contributorhttp://lattes.cnpq.br/2888641121265608
dc.contributorZanchettin, Cleber
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1244195230407619
dc.creatorSantana, Laura Emmanuella Alves dos Santos
dc.date.accessioned2012-08-30
dc.date.accessioned2014-12-17T15:46:59Z
dc.date.accessioned2022-10-06T13:37:50Z
dc.date.available2012-08-30
dc.date.available2014-12-17T15:46:59Z
dc.date.available2022-10-06T13:37:50Z
dc.date.created2012-08-30
dc.date.created2014-12-17T15:46:59Z
dc.date.issued2012-02-02
dc.identifierSANTANA, Laura Emmanuella Alves dos Santos. Otimização em comitês de classificadores: uma abordagem baseada em filtro para seleção de subconjuntos de atributos. 2012. 189 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/17946
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3971370
dc.description.abstractTraditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Sistemas e Computação
dc.publisherCiência da Computação
dc.rightsAcesso Aberto
dc.subjectClassificação de padrões
dc.subjectComitês de classificadores
dc.subjectDiversidade
dc.subjectSeleção de atributos
dc.subjectMetaheurísticas bioinspiradas
dc.subjectAlgoritmos genéticos
dc.subjectColônia de formigas
dc.subjectNuvem de partículas
dc.subjectPattern classification
dc.subjectEnsembles
dc.subjectDiversity
dc.subjectFeature selection
dc.subjectBio-inspired metaheuristics
dc.subjectGenetic algorithms
dc.subjectAnt colony
dc.subjectParticle swarm
dc.titleOtimização em comitês de classificadores: uma abordagem baseada em filtro para seleção de subconjuntos de atributos
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución