doctoralThesis
Diversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica
Fecha
2018-08-24Registro en:
LUSTOSA FILHO, José Augusto Saraiva. Diversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica. 2018. 166f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.
Autor
Lustosa Filho, José Augusto Saraiva
Resumen
Pattern classification techniques are considered to be key activities in the area of pattern
recognition, where seeks to assign a test sample to a class. The use of individual classifiers
usually exhibits deficiencies in recognition rates when compared to the use of multiple
classifiers to perform the same classification task. According to the literature, ensemble of
classifiers provide better recognition rates when candidate classifiers present uncorrelated
errors in different sub-spaces of the problem. In this context, this doctoral thesis explores
several methods of selection of classifiers, based on dynamic selection, adding a selection
criterion that prioritizes diversity and/or similarity between the base classifiers. In this way
the experiments evaluated aim to empirically elucidate the relevance of diversity and/or
similarity among the base classifiers of ensembles based on dynamic selection. Many papers
explore diversity in ensemble systems based on static selection and indicate that diversity
among the base classifiers is a factor that positively influences accuracy rates, however in
the context of ensemble based on dynamic selection there is no enough related literature
and few research that explore the influence of diversity and similarity among the base
classifiers.