dc.contributorCanuto, Anne Magaly de Paula
dc.contributor
dc.contributor
dc.contributorSantos, Araken de Medeiros
dc.contributor
dc.contributorCarvalho, Bruno Motta de
dc.contributor
dc.contributorAraújo, Daniel Sabino Amorim de
dc.contributor
dc.contributorCavalcanti, George Darmiton da Cunha
dc.contributor
dc.creatorLustosa Filho, José Augusto Saraiva
dc.date.accessioned2019-04-11T19:02:37Z
dc.date.accessioned2022-10-06T13:24:25Z
dc.date.available2019-04-11T19:02:37Z
dc.date.available2022-10-06T13:24:25Z
dc.date.created2019-04-11T19:02:37Z
dc.date.issued2018-08-24
dc.identifierLUSTOSA FILHO, José Augusto Saraiva. Diversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica. 2018. 166f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/26933
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3968208
dc.description.abstractPattern classification techniques are considered to be key activities in the area of pattern recognition, where seeks to assign a test sample to a class. The use of individual classifiers usually exhibits deficiencies in recognition rates when compared to the use of multiple classifiers to perform the same classification task. According to the literature, ensemble of classifiers provide better recognition rates when candidate classifiers present uncorrelated errors in different sub-spaces of the problem. In this context, this doctoral thesis explores several methods of selection of classifiers, based on dynamic selection, adding a selection criterion that prioritizes diversity and/or similarity between the base classifiers. In this way the experiments evaluated aim to empirically elucidate the relevance of diversity and/or similarity among the base classifiers of ensembles based on dynamic selection. Many papers explore diversity in ensemble systems based on static selection and indicate that diversity among the base classifiers is a factor that positively influences accuracy rates, however in the context of ensemble based on dynamic selection there is no enough related literature and few research that explore the influence of diversity and similarity among the base classifiers.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectComitês de classificadores
dc.subjectSeleção dinâmica
dc.subjectDiversidade
dc.subjectSimilaridade
dc.titleDiversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución