dc.creatorARGYROS,IOANNIS K
dc.creatorHILOUT,SAÏD
dc.date2008-12-01
dc.date.accessioned2017-03-07T16:04:09Z
dc.date.available2017-03-07T16:04:09Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/395515
dc.descriptionWe use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided.
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.sourceProyecciones (Antofagasta) v.27 n.3 2008
dc.subjectBanach space
dc.subjectSteffensen s method
dc.subjectgeneralized equation
dc.subjectAubin continuity
dc.subjectHölder continuity
dc.subjectradius of convergence
dc.subjectdivided difference
dc.subjectset- valued map
dc.titleON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución