dc.creator | ARGYROS,IOANNIS K | |
dc.creator | HILOUT,SAÏD | |
dc.date | 2008-12-01 | |
dc.date.accessioned | 2017-03-07T16:04:09Z | |
dc.date.available | 2017-03-07T16:04:09Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300007 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/395515 | |
dc.description | We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided. | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.source | Proyecciones (Antofagasta) v.27 n.3 2008 | |
dc.subject | Banach space | |
dc.subject | Steffensen s method | |
dc.subject | generalized equation | |
dc.subject | Aubin continuity | |
dc.subject | Hölder continuity | |
dc.subject | radius of convergence | |
dc.subject | divided difference | |
dc.subject | set- valued map | |
dc.title | ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS | |
dc.type | Artículos de revistas | |