dc.contributorChalmers University of Technology
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorMalmö University
dc.date.accessioned2014-05-27T11:29:30Z
dc.date.accessioned2022-10-05T18:50:32Z
dc.date.available2014-05-27T11:29:30Z
dc.date.available2022-10-05T18:50:32Z
dc.date.created2014-05-27T11:29:30Z
dc.date.issued2013-05-20
dc.identifierBiomedical Materials (Bristol), v. 8, n. 3, 2013.
dc.identifier1748-6041
dc.identifier1748-605X
dc.identifierhttp://hdl.handle.net/11449/75418
dc.identifier10.1088/1748-6041/8/3/035007
dc.identifierWOS:000318212600008
dc.identifier2-s2.0-84877734664
dc.identifier4517484241515548
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3924353
dc.description.abstractThis study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
dc.languageeng
dc.relationBiomedical Materials (Bristol)
dc.relation2.897
dc.relation0,768
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectAmorphous calcium phosphate
dc.subjectCalcium deposition
dc.subjectCalcium phosphate nanoparticles
dc.subjectPhysicochemical property
dc.subjectSurface coatings
dc.subjectTitanium discs
dc.subjectTitanium substrates
dc.subjectTitanium surfaces
dc.subjectBiological materials
dc.subjectBiomaterials
dc.subjectCalcium phosphate
dc.subjectCoatings
dc.subjectGene expression
dc.subjectGene expression regulation
dc.subjectNanoparticles
dc.subjectOsteoblasts
dc.subjectTitanium
dc.subjectalizarin red s
dc.subjectapatite
dc.subjectcalcium
dc.subjectcalcium phosphate
dc.subjectcollagen type 1
dc.subjectcollagen type 1A1
dc.subjectmessenger RNA
dc.subjectnanocoating
dc.subjectnanomaterial
dc.subjectnanoparticle
dc.subjectosteopontin
dc.subjectpoorly crystalline apatite
dc.subjecttitanium
dc.subjecttranscription factor RUNX2
dc.subjectunclassified drug
dc.subjectanimal cell
dc.subjectanimal tissue
dc.subjectbone development
dc.subjectcalvaria
dc.subjectcontrolled study
dc.subjectfemur
dc.subjectgene expression
dc.subjectgene repression
dc.subjectimplant
dc.subjectimplantation
dc.subjectmouse
dc.subjectnewborn
dc.subjectnonhuman
dc.subjectosteoblast
dc.subjectparticle size
dc.subjectphysical parameters
dc.subjectupregulation
dc.titleOsteogenesis-inducing calcium phosphate nanoparticle precursors applied to titanium surfaces
dc.typeArtigo


Este ítem pertenece a la siguiente institución