Artigo
The use of principal components and univariate charts to control multivariate processes
Date
2008-01-01Registration in:
Pesquisa Operacional, v. 28, n. 1, p. 173-196, 2008.
0101-7438
1678-5142
10.1590/S0101-74382008000100010
S0101-74382008000100010
2-s2.0-46749130587
2-s2.0-46749130587.pdf
Author
Universidade Estadual Paulista (Unesp)
Abstract
In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.