dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:46Z
dc.date.accessioned2022-10-05T18:11:05Z
dc.date.available2014-05-27T11:22:46Z
dc.date.available2022-10-05T18:11:05Z
dc.date.created2014-05-27T11:22:46Z
dc.date.issued2008-01-01
dc.identifierPesquisa Operacional, v. 28, n. 1, p. 173-196, 2008.
dc.identifier0101-7438
dc.identifier1678-5142
dc.identifierhttp://hdl.handle.net/11449/70249
dc.identifier10.1590/S0101-74382008000100010
dc.identifierS0101-74382008000100010
dc.identifier2-s2.0-46749130587
dc.identifier2-s2.0-46749130587.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3919585
dc.description.abstractIn this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.
dc.languageeng
dc.relationPesquisa Operacional
dc.relation0,365
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectMultivariate process control
dc.subjectPrincipal component
dc.subjectSimultaneous univariate control charts
dc.titleThe use of principal components and univariate charts to control multivariate processes
dc.typeArtigo


Este ítem pertenece a la siguiente institución