dc.creator | ARGYROS,IOANNIS K | |
dc.date | 2006-12-01 | |
dc.date.accessioned | 2017-03-07T15:46:41Z | |
dc.date.available | 2017-03-07T15:46:41Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000300006 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/390721 | |
dc.description | We provide a semilocal as well as a local convergence analysis ofNewton's method using the gamma condition [1], [10], [11]. Usingmore precise majorizing sequences than before [4], [8]-[11] and underat least as weak hypotheses, we provide in the semilocal case: finererror bounds on the distances involved and an at least as precise informationon the location of the solution; in the local case: a largerradius of convergence | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.source | Proyecciones (Antofagasta) v.25 n.3 2006 | |
dc.subject | Banach space | |
dc.subject | Newton's method | |
dc.subject | local/semilocalconvergence | |
dc.subject | Newton-Kantorovich theorem | |
dc.subject | Fréchet derivative | |
dc.subject | majorizingsequence | |
dc.subject | radius of convergence | |
dc.subject | gamma condition | |
dc.subject | analyticoperator | |
dc.title | CONVERGENCE OF NEWTON'S METHOD UNDER THE GAMMA CONDITION | |
dc.type | Artículos de revistas | |