dc.creatorCORTÉS,LUIS
dc.creatorFERNÁNDEZ,CLAUDIO
dc.creatorPERLA,GUSTAVO
dc.date2006-08-01
dc.date.accessioned2017-03-07T15:39:56Z
dc.date.available2017-03-07T15:39:56Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200006
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/388886
dc.descriptionIn this work we consider the propagation of time-harmonic elastic waves outside of a star-shaped domain with a "linear velocity at the boundary". We describe a new approach to investigate results of existence and uniqueness for this exterior problem. To this end, we used a method similar to the one discussed in [11, 12] which has its genesis in [13] and relies on a stationary approach of resonances. The fundamental step of our approach is to reduce the unbounded nature of the problem to a bounded domain introducing an auxiliary boundary condition of Dirichlet type. In particular, we find a large region in the complex plane which is "free" of resonances
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.sourceProyecciones (Antofagasta) v.25 n.2 2006
dc.subjectExistence and uniqueness of outgoing solutions
dc.subjectlinear elastic wave equation, star-shaped domain
dc.subjectlinear velocity boundary type conditions
dc.subjectresonances
dc.titleON OUTGOING SOLUTIONS FOR A SYSTEM OF TIME-HARMONIC ELASTIC WAVE IN THE EXTERIOR OF A STAR-SHAPED DOMAIN
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución