| dc.creator | GUO XU,ZHEN | |
| dc.creator | GUI SHI,FU | |
| dc.date | 2006-05-01 | |
| dc.date.accessioned | 2017-03-07T15:37:58Z | |
| dc.date.available | 2017-03-07T15:37:58Z | |
| dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/388457 | |
| dc.description | In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by nets | |
| dc.format | text/html | |
| dc.language | en | |
| dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
| dc.source | Proyecciones (Antofagasta) v.25 n.1 2006 | |
| dc.subject | L-topological space | |
| dc.subject | strongly preopen L-set | |
| dc.subject | strongly preclosed L-set | |
| dc.subject | SPN-compactness | |
| dc.subject | countable SPN-compactness | |
| dc.subject | the SPN-Lindelöf property | |
| dc.title | SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES | |
| dc.type | Artículos de revistas | |