Artigo
GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
Fecha
2010-10-01Registro en:
International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.
0218-1274
10.1142/S0218127410027593
WOS:000286430000006
3757225669056317
6050955861168161
0000-0002-1430-5986
Autor
Univ Autonoma Barcelona
Universidade Estadual Paulista (Unesp)
Resumen
In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).