dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:23:33Z
dc.date.accessioned2022-10-05T13:11:18Z
dc.date.available2014-05-20T13:23:33Z
dc.date.available2022-10-05T13:11:18Z
dc.date.created2014-05-20T13:23:33Z
dc.date.issued2010-10-01
dc.identifierInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.
dc.identifier0218-1274
dc.identifierhttp://hdl.handle.net/11449/7118
dc.identifier10.1142/S0218127410027593
dc.identifierWOS:000286430000006
dc.identifier3757225669056317
dc.identifier6050955861168161
dc.identifier0000-0002-1430-5986
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3884121
dc.description.abstractIn this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal of Bifurcation and Chaos
dc.relation1.501
dc.relation0,568
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectIntegrability
dc.subjectLorenz system
dc.subjectPoincare compactification
dc.subjectdynamics at infinity invariant algebraic surface
dc.titleGLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
dc.typeArtigo


Este ítem pertenece a la siguiente institución