Tese de Doutorado
Detecção de clusters espacias e espaço-temporais em modelos com excesso de zeros e sobredispersão
Fecha
2015-04-16Autor
Leticia Pereira Pinto
Institución
Resumen
The Spatial Scan Statistic is one of the most important methods for detecting and monitoring spatial disease clusters. Usually it is assumed that disease cases follow a Poisson or Binomial distribution. In practice, however, case count datasets frequently present na excess of zeroes and/or overdispersion, resulting in the violation of those commonly used models, increasing type I error occurrence. This thesis describes a modi_cation of the Spatial Scan Statistic with the Zero Inated Double Poisson (ZIDP) model to reduce type I error, accommodating simultaneously an excess of zeroes and overdispersion. The null and alternative model parameters are estimated by the Expectation-Maximization algorithm and the p-value is obtained through the Fast Double Bootstrap Test. An application is presented for Hanseniasis data in the Brazilian Amazon. An extension of this statistic in prospective space-time surveillance systems has been studied and in assess their performance Monte Carlo simulations were used.