Review of network control systems as a basis for small-scale satellite systems
Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala;
Revisão de sistemas de controle de rede como base para sistemas de satélite de pequena escala
dc.creator | Rodríguez Pirateque, German Wedge | |
dc.creator | Sofrony Esmeral, Jorge | |
dc.date.accessioned | 2021-06-17T12:59:40Z | |
dc.date.accessioned | 2022-09-29T15:46:08Z | |
dc.date.available | 2021-06-17T12:59:40Z | |
dc.date.available | 2022-09-29T15:46:08Z | |
dc.date.created | 2021-06-17T12:59:40Z | |
dc.identifier | https://hdl.handle.net/20.500.12963/285 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3782129 | |
dc.publisher | Escuela de Postgrados de la Fuerza Aérea Colombiana | |
dc.relation | https://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/604/825 | |
dc.relation | https://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/604/841 | |
dc.relation | /*ref*/Abbott, M. (2000). The Role of Small Satellites in NASA and NOAA Earth Observation Programs, 41-50. https://doi.org/10.17226/9819 | |
dc.relation | /*ref*/Agogino, A., HolmesParker, C. & Tuner, K. (2012). Evolving distributed resource sharing for cubesat constellations. GECCO’12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation, 1015–1022. https://doi.org/10.1145/2330163.2330305 | |
dc.relation | /*ref*/Alvarez, J., & Walls, B. (2016). Constellations, Clusters , and Communication Technology: Expanding Small Satellite Access to Space. | |
dc.relation | /*ref*/Beard, R. W. (2002). Virtual structure based spacecraft formation control with formation feedback. AIAA Guidance, Navigation, and Control Conference and Exhibit, 1-8. Recuperado de https://pdfs.semanticscholar.org/3946/b500ad05a2d9f6c0a9519054e0b7c82e9f77.pdf | |
dc.relation | /*ref*/Bouwmeester, J., & Guo, J. (2010). Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronautica, 67(7–8), 854–862. https://doi.org/10.1016/j.actaastro.2010.06.004 | |
dc.relation | /*ref*/Braukhane, A., Arza, M., Bacher, M., Calaprice, M., Fiedler, H., Koehne, V., … Rivera, J. J. (2010). FormSat, a scalable formation flying communication satellite system. IEEE Aerospace Conference Proceedings, (1). https://doi.org/10.1109/AERO.2010.5446999 | |
dc.relation | /*ref*/Brockett, R. W. (2008). Reduced Complexity Control Systems ?? IFAC Proceedings Volumes (Vol. 41). IFAC. https://doi.org/10.3182/20080706-5-KR-1001.00001 | |
dc.relation | /*ref*/Cao, L., & Chen, X. (2016). Minimum sliding mode error feedback control for inner-formation satellite system with J 2 and small eccentricity, 59(July), 1–18. https://doi.org/10.1007/s11432-016-5573-1 | |
dc.relation | /*ref*/Cao, L., Chen, X., & Sheng, T. (2013). Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode. Advances in Space Research, 51(12), 2374–2393. https://doi.org/10.1016/j.asr.2013.02.004 | |
dc.relation | /*ref*/Cao, Y. U., Fukunaga, A. S., Kahng, A. B., & Meng, F. (1997). Cooperative mobile robotics: antecedents and directions. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1, 226–234. https://doi.org/10.1109/IROS.1995.525801 | |
dc.relation | /*ref*/Castellanos, C. A. y Aparicio, L. E. (2014). Diseño y Simulación de un Sistema de Determinación de Actitud basado en el Filtro Extendido de Kalman para el Cubesat Colombia I. Rev. Fac. Ing. Univ. Antioquia, 70, 146-154 | |
dc.relation | /*ref*/Chen, B., Linz, D. D., & Cheng, H. H. (2008). XML-based agent communication , migration and computation in mobile agent systems, 81, 1364–1376. https://doi.org/10.1016/j.jss.2007.10.026 | |
dc.relation | /*ref*/Chen, Z., & Zeng, Y. (2013). A Swarm Intelligence Networking Framework for Small Satellite Systems. Communications and Network, 5(September), 171–175. | |
dc.relation | /*ref*/Cruz, D., Mcclintock, J., Perteet, B., Orqueda, O. A. A., Cao, Y., & Fierro, R. (2007). Decentralized cooperative control. IEEE Control Systems Magazine, (June), 58–78. | |
dc.relation | /*ref*/De Arboleya, J. L. G., & Moreno, J. S. (2012). Multiagent attitude control system for satellites based in momentum wheels and event-driven synchronization. Journal of the Astronautical Sciences, 59(4), 726–746. https://doi.org/10.1007/s40295-014-0010-4 | |
dc.relation | /*ref*/De Freitas, N. C. A., Filho, P. P. R., De Moura, C. D. G., & Silva, M. P. S. (2016). AgentGeo: Multi-Agent System of Satellite Images Mining. IEEE Latin America Transactions, 14(3), 1343–1351. https://doi.org/10.1109/TLA.2016.7459619 | |
dc.relation | /*ref*/Dhios, R. A. (2013). Paradigma de “ Agentes de Software ” aplicado al desarrollo de satélites amateurs ., 1–5. VII Congreso Argentino de Tecnología Espacial. Mayo 15-17, 2013. Mendoza, Argentina. | |
dc.relation | /*ref*/Díaz González, F. A., Quintero Torres, S. V., Triana Correa, J. S. & Morón Hernández. D. C. (2014). Aproximación a los sistemas de percepción remota en satélites pequeños. | |
dc.relation | /*ref*/Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691 | |
dc.relation | /*ref*/Edlerman, E., & Kronhaus, I. (2016). Analysis of electric propulsion capabilities in establishment and. March 2016, Conference: 6th International Conference on Astrodynamics Tools and Techniques, https://www.researchgate.net/publication/304800017_ | |
dc.relation | /*ref*/Engelen, S. (2016). Swarm Satellites: Design, Characteristics and Applications. TU Delft University (Vol. 91). Doi: 10.4233/ uuid:a5dbc5f7-039b-431b-8f32-d3394e690348, https://repository.tudelft.nl/islandora/object/uuid:a5dbc5f7-039b-431b-8f32-d3394e690348?collection=research | |
dc.relation | /*ref*/Forero, D. R., & Libertadores, F. U. L. (2015). aerodinámica de un globo sonda recuperable y reutilizable 1. | |
dc.relation | /*ref*/Gill, E., Sundaramoorthy, P., Bouwmeester, J., Zandbergen, B., & Reinhard, R. (2013). Acta Astronautica Formation flying within a constellation of nano-satellites : The QB50 mission. Acta Astronautica, 82(1), 110–117. https://doi.org/10.1016/j.actaastro.2012.04.029 | |
dc.relation | /*ref*/Guerman, A., Ovchinnikov, M., Smirnov, G., & Trofimov, S. (2012). Closed Relative Trajectories for Formation Flying with Single- Input Control, 2012. https://doi.org/10.1155/2012/967248 | |
dc.relation | /*ref*/Gurfil, P., Herscovitz, J., & Pariente, M. (2014). SSC12-VII-2 The SAMSON Project – Cluster Flight and Geolocation with Three Autonomous Nano-satellites. | |
dc.relation | /*ref*/Hawe, G. I., Coates, G., Wilson, D. T., & Crouch, R. S. (2012). Agent- Based Simulation for Large-Scale Emergency Response : A Survey of Usage and Implementation, 45(1). https://doi.org/10.1145/2379776.2379784 | |
dc.relation | /*ref*/Huang, H., Yang, L., Zhu, Y., & Zhang, Y. (2014). Acta Astronautica Collective trajectory planning for satellite swarm using intersatellite electromagnetic force. Acta Astronautica, 104(1), 220–230. https://doi.org/10.1016/j.actaastro.2014.07.032 | |
dc.relation | /*ref*/Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules, 48(6), 988–1001. | |
dc.relation | /*ref*/Ji, M., Member, S., Egerstedt, M., & Member, S. (2007). Distributed Coordination Control of Multiagent Systems While Preserving Connectedness, 23(4), 693–703. | |
dc.relation | /*ref*/Julián, V., & Botti, V. (2003). Estudio de métodos de desarrollo de sistemas multiagente. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(18), 65-80. Recuperado de http://www.redalyc.org/articulo.oa?id=92501806 | |
dc.relation | /*ref*/Kempton, L. C., Herrmann, G., & di Bernardo, M. (2017). Distributed optimisation and control of graph Laplacian eigenvalues for robust consensus via an adaptive multilayer strategy. International Journal of Robust and Nonlinear Control, 1–9. https://doi.org/10.1002/rnc.3808 | |
dc.relation | /*ref*/Kempton, L., Herrmann, G., & di Bernardo, M. (2016). Distributed adaptive optimization and control of network structures. 2016 IEEE 55th Conference on Decision and Control (CDC), (Cdc), 5839–5844. https://doi.org/10.1109/CDC.2016.7799167 | |
dc.relation | /*ref*/Kong, E. M. C., Kwon, D. W., Schweighart, S. A., Elias, L. M., Sedwick, R. J., Miller, D. W., & Case, T. (2004). Electromagnetic Formation Flight for Multisatellite Arrays, 41(4). | |
dc.relation | /*ref*/Kumar, V. (2017). Autonomous Formation Keeping of Geostationary Satellites with Regional Navigation Satellites and Dynamics. Journal of Guidance, Control, and Dynamics, 1–21. https://doi.org/10.2514/1.G001652 | |
dc.relation | /*ref*/Kwak, J., Scerri, P., Tambe, M., Sert, O., & Freedy, A. (2011). Towards a Robust MultiAgent Autonomous Reasoning System (MA-ARS): An Initial Simulation Study for Satellite Defense. AIAA Infotech at Aerospace, (March), 1–17. | |
dc.relation | /*ref*/J.R.T. Lawton & B.J. Young. (1999). Decentralized approach to elementary formation maneuvers. http://www.et.byu.edu/~beard/papers/library/lawton-tra99.pdf | |
dc.relation | /*ref*/Lawton, J. R., & Beard, R. W. (2002). Synchronized multiple spacecraft rotations, 38, 1359–1364. | |
dc.relation | /*ref*/Lesser, V. R. (1995). Systems : An Emerging Subdiscipline of AI, 27(3). | |
dc.relation | /*ref*/Lesser, V. R. (1995). Systems : An Emerging Subdiscipline of AI, 27(3). | |
dc.relation | /*ref*/Lesser, V. R. (1999). Cooperative multiagent systems: a personal view of the state of the art. IEEE Transactions on Knowledge and Data Engineering, 11(1), 133–142. https://doi.org/10.1109/69.755622 | |
dc.relation | /*ref*/Li, J., Pan, Y., & Kumar, K. D. (2010). Formation Flying Control of Small Satellites, (August), 1–25. https://doi.org/10.2514/6.2010-8296 | |
dc.relation | /*ref*/Lowe, C. J., & Macdonald, M. (2014). Acta Astronautica Rapid model-based inter-disciplinary design of a CubeSat mission. Acta Astronautica, 105(1), 321–332. https://doi.org/10.1016/j.actaastro.2014.10.002 | |
dc.relation | /*ref*/Ma, Y., Jiang, W., Sang, N., & Zhang, X. (2012). ARCSM: A distributed feedback control mechanism for security-critical real-time system. Proceedings of the 2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, ISPA 2012, (2), 379–386. https://doi.org/10.1109/ISPA.2012.56 | |
dc.relation | /*ref*/Martin, M., Klupar, P., Kilberg, S. & Winter, J. (1997). TechSat 21 and revolutionizing space missions using microsatellites. American Institute of Aeronautics and Astronautics. 1–10. https://digitalcommons.usu.edu/smallsat/2001/All2001/3/ | |
dc.relation | /*ref*/Martinez, R. (2015). Diseño de un controlador para la formación de grupos de robots móviles, Conference: XVI Congreso Latinoamericano de Control Automático, CLCA At: Cancún, Quintana Roo, México, https://www.researchgate.net/publication/280946697. | |
dc.relation | /*ref*/Mazal, L., & Gurfil, P. (2014). Acta Astronautica Closed-loop distance- keeping for long-term satellite cluster flight. Acta Astronautica, 94(1), 73–82. https://doi.org/10.1016/j.actaastro.2013.08.002 | |
dc.relation | /*ref*/Mclainl, T. W., Chandler, P. R., Rasmussen, S., & Pachter, M. (2001). Cooperative Control of UAV Rendezvous. | |
dc.relation | /*ref*/Medina, C. (2017). Nanosatélites. | |
dc.relation | /*ref*/Mier-hicks, F., & Lozano, P. C. (2017). Spacecraft Charging and Attitude Control Characterization of Electrospray Thrusters on a Magnetically Levitated Testbed, (February). | |
dc.relation | /*ref*/Mo, Y., & Murray, R. M. (2017). Privacy Preserving Average Consensus, 62(2), 753–765. | |
dc.relation | /*ref*/Moradi, M. H., Razini, S., & Hosseinian, S. M. (2016). State of art of multiagent systems in power engineering : A review. Renewable and Sustainable Energy Reviews, 58, 814–824. https://doi.org/10.1016/j.rser.2015.12.339 | |
dc.relation | /*ref*/Murray, R. M. (2007). Recent Research in Cooperative Control of Multivehicle Systems. Journal of Dynamic Systems, Measurement, and Control, 129, 571–583. https://doi.org/10.1115/1.2766721, | |
dc.relation | /*ref*/Nunes, M (2015). Satellite Constellation Optimization Method for Future Earth Observation Missions Using Small Satellites. Recuperado de https://www.researchgate.net/publication/272161831 | |
dc.relation | /*ref*/Olfati-saber, B. R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems, 95(1), 215– 233. | |
dc.relation | /*ref*/Olfati-saber, R., & Murray, R. M. (2004). Consensus Problems in Networks of Agents With Switching Topology and Time-Delays, 49(9), 1520–1533. | |
dc.relation | /*ref*/Olfati-saber, R., & Shamma, J. S. (2005). Consensus Filters for Sensor Networks and, (0), 6698–6703. | |
dc.relation | /*ref*/Ortega, F. (2006). Sistemas Multiagente y Fútbol de robots : Estado del Arte, 1–7. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.83.5889&type=cc | |
dc.relation | /*ref*/Padron, A. M., Nebylov, A. & Knyazhsky, A. (2017). Verification of the Precise Orbital Holding of Small Satellite Formation for Remote Control of Robots on a Planet Surface, 360–363. | |
dc.relation | /*ref*/Poghosyan, A., & Golkar, A. (2016). Progress in Aerospace Sciences CubeSat evolution : Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, (September), 1–25. https://doi.org/10.1016/j.paerosci.2016.11.002 | |
dc.relation | /*ref*/Poveda G, O. S. (2016). Integración de satélites en el desarrollo de operaciones militares aéreas en Colombia según su órbita. | |
dc.relation | /*ref*/Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-osorio, R. M., Pinto, F. & Burleigh, S. C. (2016). Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. | |
dc.relation | /*ref*/Ren, W. (2006). Consensus Based Formation Control Strategies for Multi-vehicle Systems. American Control Conference Minneapolis, 4237–4242 | |
dc.relation | /*ref*/Ren, W. & Beard, R. W. (2004). Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach, 27(1), 73–82. | |
dc.relation | /*ref*/Ren, W., Beard, R. W., Atkins, E. M. & Theory, A. G. (2005). A Survey of Consensus Problems in Multi-agent Coordination, 1859–1864. | |
dc.relation | /*ref*/Ren, W., Chao, H., Member, S., Bourgeous, W. & Member, S. (2008). Experimental Validation of Consensus Algorithms for Multivehicle Cooperative Control, 16(4), 745–752. | |
dc.relation | /*ref*/Richard, M. (2009). Cooperative control of distributed autonomous systems with applications to wireless sensor networks. | |
dc.relation | /*ref*/Rouff, C. (2000). Process for Introducing Agent Technology into Space Missions. IEEE Aerospace Conference Proceedings, 2743–2750. DOI: 10.1109/AERO.2001.931295, Recuperado de: https://ieeexplore.ieee.org/document/931295/ | |
dc.relation | /*ref*/Ryan, A., Zennaro, M., Howell, A., Sengupta, R. & Hedrick, J. K. (2004). An overview of emerging results in cooperative UAV control. Decision and Control, 2004. CDC. 43rd IEEE Conference On, 1, 602–607 Vol.1. https://doi.org/10.1109/CDC.2004.1428700 | |
dc.relation | /*ref*/Saaj, C. M., Bandyopadhyay, S. & Bandyopadhyay, B. (2010). Robust Control And Path Planning Algorithms For Small Satellite Formation Flying Missions. IAC-09-B4., 1–7. Recuperado de https://pdfs.semanticscholar.org/6d71/290b5ffde8e9d326dbd6499ae9a7cbf709d4.pdf | |
dc.relation | /*ref*/Sadeghi, S. & Emami, M. R. (2017). ScienceDirect Multi-spacecraft studies of the auroral acceleration region : From cluster to nanosatellites. Advances in Space Research, 59(5), 1173–1188. Doi: https://doi.org/10.1016/j.asr.2016.11.037 | |
dc.relation | /*ref*/Scharnagl, J., Scharnagl, J., Schilling, K., Schilling, K., Scharnagl, J. & Schilling, K. (2016). ScienceDirect Hardware-in-the- Loop Hardware-in-the-Loop Hardware-in-the-Loop Mobile Based on on Mobile Mobile Robot Platforms. IFAC-PapersOnLine, 49(30), 65–70. Doi: https://doi.org/10.1016/j.ifacol.2016.11.127 | |
dc.relation | /*ref*/Schilling, K. (2017). Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90, 118–124. Doi: https://doi.org/10.1016/j.robot.2016.10.007 | |
dc.relation | /*ref*/Sedwick, R. J., Supervisor, T., Miller, D. W. & Velde, W. E. Vander. (2001). Development and Analysis of a High Fidelity Linearized J 2 Model for Satellite Formation Flying. | |
dc.relation | /*ref*/Shao, X., Song, M., Wang, J., Zhang, D. & Chen, J. (2017). Satellite formation keeping using differential lift and drag under J2 perturbation. Doi: https://doi.org/10.1108/AEAT-06-2015-0168 | |
dc.relation | /*ref*/Sirigineedi, G., Tsourdos, A., White, B. A. & Zbikowski, R. (2011). Kripke modelling and verification of temporal specifications of a multiple UAV system, 31–52. Doi: https://doi.org/10.1007/s10472-011-9270-x | |
dc.relation | /*ref*/Skinnemoen, H. (2014). UAV & Satellite Communications. IEEE, Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 12–19. | |
dc.relation | /*ref*/Sorensen, T. (junio, 2014). Cooperative Control of Multiple Small Satellites using the Comprehensive Open-architecture Space Mission Operations System Cooperative Control Of Multiple Small Open-Architecture Space Mission Operations. | |
dc.relation | /*ref*/Sun, Y. (2012). Average consensus in networks of dynamic agents with uncertain topologies and time-varying delays. Journal of the Franklin Institute, 349(3), 1061–1073. Doi: https://doi.org/10.1016/j.jfranklin.2011.12.007 | |
dc.relation | /*ref*/Sundararaman, B., Buy, U. & Kshemkalyani, A. D. (2005). Clock synchronization for wireless sensor networks : a survey, 3, 281– 323. Doi: https://doi.org/10.1016/j.adhoc.2005.01.002 | |
dc.relation | /*ref*/Taylor, P., Wang, Q., Gao, H., Alsaadi, F. & Hayat, T. (octubre, 2014). Systems Science & Control Engineering : An Open An overview of consensus problems in constrained multi-agent coordination, 37–41. Doi: https://doi.org/10.1080/21642583.2014.897658 | |
dc.relation | /*ref*/Truszkowski, W., Rash, J., Rouff, C. & Hinchey, M. (2004). Some autonomic properties of two legacy multi-agent systems - LOGOS and ACT. Proceedings - 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, ECBS 2004, 490–498. Doi: https://doi.org/10.1109/ECBS.2004.1316738 | |
dc.relation | /*ref*/Tsarev, A. (2013). Smart Solutions: Multi-Agent Technology for Real- Time Enterprise Resource Management. IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), 1–6. Doi: 10.1109/ICIS.2013.6607827. Recuperado de https://ieeexplore.ieee.org/document/6607827/ | |
dc.relation | /*ref*/Villaplana, E. (2008). Gormas: guías para el desarrollo de sistemas multiagente abiertos basados en organizaciones. Tesis Doctorado en informatica Universidad Politécnica de Valencia. | |
dc.relation | /*ref*/Wang, B., Wang, J., Zhang, B., S. & Li, X. (2016). Global Cooperative Control Framework for Multiagent Systems Subject to Actuator Saturation With Industrial Applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 1–14. Doi: 10.1109/TSMC.2016.2573584 | |
dc.relation | /*ref*/Wang, C., Li, J., Jing, N., Wang, J., & Chen, H. (2011). A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 24(4), 493–505. Doi: https://doi.org/10.1016/S1000-9361(11)60057-5 | |
dc.relation | /*ref*/Wang, P. (septiembre, 1996). Coordination and control of multiple microspacecraft moving in formation. | |
dc.relation | /*ref*/Wawrzaszek, R. & Banaszkiewicz, M. (2007). Control and reconfiguration of satellite formations by electromagnetic forces. Journal of Telecommunications and Information Technology. 1, 54-58. Recuperado de http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAT8-0005-0012 | |
dc.relation | /*ref*/Wei Ren, Randal W. Beard, & E. M. A. (abril, 2007). Information Consensus in Multivehicle Cooperative Control. IEEE Control Systems Magazine, 71–82. | |
dc.relation | /*ref*/Weidow, D., Bristow, J. & Weidow, D. A. (1999). NASA/DoD University Nano-Satellites for Distributed Spacecraft Control. | |
dc.relation | /*ref*/Xiang, C. A. O. & Daqi, Z. H. U. (julio, 2013). A Survey of cooperative hunting control algorithms for multi-AUV systems. Conferencia presentada en Proceedings of the 32nd Chinese Control Conference, 5791-5795. Recuperado de https://ieeexplore.ieee.org/document/6640452/ | |
dc.relation | /*ref*/Xu, Y., Fitz-Coy, N., Lind, R. & Tatsch, A. (enero, 2007). μ Control for Satellites Formation Flying. Journal of Aerospace Engineering, 20(1). Doi: https://doi.org/10.1061/(ASCE)0893-1321(2007)20:1(10) | |
dc.relation | /*ref*/Yeh, H., Sparks, A. & Force, A. (junio, 2000). Geometry and Control of Satellite Formations. Conferencia presentada en Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) Doi: 10.1109/ACC.2000.878926, 384–388. Recuperado de https://ieeexplore.ieee.org/document/878926/ | |
dc.relation | /*ref*/Zampieri, S. (2008). Trends in Networked Control Systems. IFAC Proceedings Volumes (Vol. 41). IFAC. Doi: https://doi.org/10.3182/20080706-5-KR-1001.00486 | |
dc.relation | /*ref*/Zenick, R. G. & Kohlhepp, K. (2001). GPS Micro Navigation and Communication System for Clusters of Micro and Nanosatellites. Conferencia presentada en 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), doi: 10.1109/ AERO.2001.931212. Recuperado de https://ieeexplore.ieee.org/document/931212/ | |
dc.relation | /*ref*/Zetocha, P., Self, L., Wainwright, R. & Burns, R., Brito, M. & Surka, D. (2000). Commanding and controlling satellite clusters. IEEE Intelligent Systems, 15(6), 8-13. doi:10.1109/5254.895850. Recuperado de https://www.computer.org/csdl/mags/ex/2000/06/x6008-abs.html | |
dc.relation | /*ref*/Zhang, H. & Gurfil, P. (2015). Acta Astronautica Satellite cluster flight using on-off cyclic control $. Acta Astronautica, 106, 1–12. Doi: https://doi.org/10.1016/j.actaastro.2014.10.004 | |
dc.relation | /*ref*/Zhang, H. & Gurfil, P. (2016). Cooperative Control of Multiple Satellites via Consensus. Conferencia presentada en 2016 24th Mediterranean Conference on Control and Automation (MED), 1102–1107. Dio: 10.1109/MED.2016.7536011. Recuperado de https://ieeexplore.ieee.org/document/7536011/ | |
dc.relation | /*ref*/Zhu, A. & Yang, S. X. (2010). A Survey on Intelligent Interaction and Cooperative Control of Multi-robot Systems. Conferencia presentada en IEEE ICCA 2010. 1812–1817. Doi: 10.1109/ ICCA.2010.5524132. Recuperado de https://ieeexplore.ieee.org/abstract/document/5524132/ | |
dc.relation | /*ref*/Zhu, J., Yang, Q., Huang, W. & Lu, R. (2015). A formal model of satellite communication system network control protocol based on generalized stochastic Petri nets. 2015 IEEE International Conference on Computer and Communications (ICCC), 340– 346. Doi://doi.org/10.1109/CompComm.2015.7387593 | |
dc.source | Ciencia y Poder Aéreo; Vol. 13 No. 2 (2018): July - December; 90-125 | |
dc.source | Ciencia y Poder Aéreo; Vol. 13 Núm. 2 (2018): Julio- Diciembre; 90-125 | |
dc.source | Ciencia y Poder Aéreo; v. 13 n. 2 (2018): Julho -Dezembro; 90-125 | |
dc.source | 2389-9468 | |
dc.source | 1909-7050 | |
dc.subject | multi-agent system | |
dc.subject | satellite architectures | |
dc.subject | constellations | |
dc.subject | network control | |
dc.subject | sistemas multiagente | |
dc.subject | arquitecturas satelitales | |
dc.subject | constelaciones | |
dc.subject | control en red | |
dc.subject | sistemas multiagentes | |
dc.subject | arquiteturas satelitais | |
dc.subject | constelações, | |
dc.subject | controle de redes | |
dc.title | Review of network control systems as a basis for small-scale satellite systems | |
dc.title | Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala | |
dc.title | Revisão de sistemas de controle de rede como base para sistemas de satélite de pequena escala | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |