dc.creatorAlvarez, A.
dc.creatorAyon-Beato, E.
dc.creatorGonzalez, HA.
dc.creatorHassaine, M.
dc.date2014-12-23T15:35:50Z
dc.date2014-12-23T15:35:50Z
dc.date2014-06-09
dc.date.accessioned2017-03-07T15:02:06Z
dc.date.available2017-03-07T15:02:06Z
dc.identifierJOURNAL OF HIGH ENERGY PHYSICS 6
dc.identifier1029-8479
dc.identifierhttp://dspace.utalca.cl/handle/1950/10216
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/377104
dc.descriptionUniv Talca, Inst Matemat & Fis, Talca, Chile; Hassaine, M (Hassaine, Mokhtar)
dc.descriptionCharged Lifshitz black holes for the Einstein-Proca-Maxwell system with a negative cosmological constant in arbitrary dimension D are known only if the dynamical critical exponent is fixed as z = 2(D - 2). In the present work, we show that these configurations can be extended to much more general charged black holes which in addition exist for any value of the dynamical exponent z > 1 by considering a nonlinear electrodynamics instead of the Maxwell theory. More precisely, we introduce a two-parametric nonlinear electrodynamics defined in the more general, but less known, so-called ( , P )-formalism and obtain a family of charged black hole solutions depending on two parameters. We also remark that the value of the dynamical exponent z = D - 2 turns out to be critical in the sense that it yields asymptotically Lifshitz black holes with logarithmic decay supported by a particular logarithmic electrodynamics. All these configurations include extremal Lifshitz black holes. Charged topological Lifshitz black holes are also shown to emerge by slightly generalizing the proposed electrodynamics.
dc.languageen
dc.publisherSPRINGER
dc.subjectHolography and condensed matter physics (AdS/CMT)
dc.subjectGauge-gravity correspondence
dc.subjectField Theories in Higher Dimensions
dc.subjectBlack Holes
dc.titleNonlinearly charged Lifshitz black holes for any exponent z > 1
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución