dc.creatorLizama, C.
dc.creatorMiana, PJ.
dc.creatorPonce, R.
dc.creatorSanchez-Lajusticia, L.
dc.date2014-11-21T19:58:24Z
dc.date2014-11-21T19:58:24Z
dc.date2014-11-01
dc.date.accessioned2017-03-07T15:01:54Z
dc.date.available2017-03-07T15:01:54Z
dc.identifierJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 419(1): 373-394
dc.identifier0022-247X
dc.identifierhttp://dspace.utalca.cl/handle/1950/10057
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/377028
dc.descriptionPonce, R (Ponce, Rodrigo)Univ Talca, Inst Matemat & Fis, Talca, Chile
dc.descriptionFor beta > 0 and p >= 1, the generalized Cesaro operator l(beta)f(t) := beta/t(beta)integral(t)(0)(t - s)(beta-1) f(s)ds and its companion operator l beta* defined on Sobolev spaces J(p)((alpha))(t(alpha)) and Jp((alpha))(vertical bar t vertical bar(alpha)) (where alpha >= 0 is the fractional order of derivation and are embedded in L-p(R+) and L-p(R) respectively) are studied. We prove that if p > 1, then l(beta) and l(beta)* are bounded operators and commute on J(p)((alpha))(t(alpha)) and J(p)((alpha))(vertical bar t vertical bar(alpha)) . We calculate explicitly their spectra sigma(l(beta)) and sigma(l(beta)(*)) and their operator norms (which depend on p). For 1 < p <= 2, we prove that <(l(beta)(f))over cap> = l(beta)*((f) over cap) and <(l(beta)*(f))over cap> = l(beta)((f) over cap) where (f) over cap denotes the Fourier transform of a function f is an element of L-p (R). (C) 2014 Elsevier Inc. All rights reserved.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.subjectCesaro operators
dc.subjectSobolev spaces
dc.subjectBoundedness
dc.titleOn the boundedness of generalized Cesaro operators on Sobolev spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución