dc.creator | Lizama, C. | |
dc.creator | Miana, PJ. | |
dc.creator | Ponce, R. | |
dc.creator | Sanchez-Lajusticia, L. | |
dc.date | 2014-11-21T19:58:24Z | |
dc.date | 2014-11-21T19:58:24Z | |
dc.date | 2014-11-01 | |
dc.date.accessioned | 2017-03-07T15:01:54Z | |
dc.date.available | 2017-03-07T15:01:54Z | |
dc.identifier | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 419(1): 373-394 | |
dc.identifier | 0022-247X | |
dc.identifier | http://dspace.utalca.cl/handle/1950/10057 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/377028 | |
dc.description | Ponce, R (Ponce, Rodrigo)Univ Talca, Inst Matemat & Fis, Talca, Chile | |
dc.description | For beta > 0 and p >= 1, the generalized Cesaro operator
l(beta)f(t) := beta/t(beta)integral(t)(0)(t - s)(beta-1) f(s)ds
and its companion operator l beta* defined on Sobolev spaces J(p)((alpha))(t(alpha)) and Jp((alpha))(vertical bar t vertical bar(alpha)) (where alpha >= 0 is the fractional order of derivation and are embedded in L-p(R+) and L-p(R) respectively) are studied. We prove that if p > 1, then l(beta) and l(beta)* are bounded operators and commute on J(p)((alpha))(t(alpha)) and J(p)((alpha))(vertical bar t vertical bar(alpha)) . We calculate explicitly their spectra sigma(l(beta)) and sigma(l(beta)(*)) and their operator norms (which depend on p). For 1 < p <= 2, we prove that <(l(beta)(f))over cap> = l(beta)*((f) over cap) and <(l(beta)*(f))over cap> = l(beta)((f) over cap) where (f) over cap denotes the Fourier transform of a function f is an element of L-p (R). (C) 2014 Elsevier Inc. All rights reserved. | |
dc.language | en | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.subject | Cesaro operators | |
dc.subject | Sobolev spaces | |
dc.subject | Boundedness | |
dc.title | On the boundedness of generalized Cesaro operators on Sobolev spaces | |
dc.type | Artículos de revistas | |