dc.creatorLiendo, A.
dc.creatorSuss, H.
dc.date2013-11-22T15:42:45Z
dc.date2013-11-22T15:42:45Z
dc.date2013-03
dc.date.accessioned2017-03-07T15:00:24Z
dc.date.available2017-03-07T15:00:24Z
dc.identifierSource: TOHOKU MATHEMATICAL JOURNAL Volume: 65 Issue: 1 Pages: 105-130
dc.identifier0040-8735
dc.identifierhttp://dspace.utalca.cl/handle/1950/9476
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/376492
dc.descriptionLiendo, A (Liendo, Alvaro). Univ Talca, Inst Matemat & Fis, Talca, Chile
dc.descriptionWe propose a method to compute a desingularization of a normal affine variety X endowed with a torus action in terms of a combinatorial description of such a variety due to Altmann and Hausen. This desingularization allows us to study the structure of the singularities of X. In particular, we give criteria for X to have only rational, (Q-)factorial, or (Q-)Gorenstein singularities. We also give partial criteria for X to be Cohen-Macaulay or log-terminal. Finally, we provide a method to construct factorial affine varieties with a torus action. This leads to a full classification of such varieties in the case where the action is of complexity one
dc.publisherTOHOKU UNIVERSITY, MATHEMATICAL INST, SENDAI, 980-77, JAPAN
dc.subjectTorus actions
dc.subjectT-varieties; characterization of singularities
dc.subjecttoroidal desingularization
dc.titleNormal Singularities with torus actions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución