dc.creatorShapiro, D.B.
dc.creatorO'Ryan, M.
dc.date2013-09-30T20:58:31Z
dc.date2013-09-30T20:58:31Z
dc.date2013-12
dc.date.accessioned2017-03-07T15:00:07Z
dc.date.available2017-03-07T15:00:07Z
dc.identifierFuente: JOURNAL OF PURE AND APPLIED ALGEBRA Volumen: 217 Número: 12 Páginas: 2263-2273 DOI: 10.1016/j.jpaa.2013.03.005
dc.identifier0022-4049
dc.identifierhttp://dspace.utalca.cl/handle/1950/9380
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/376381
dc.descriptionDaniel B. Shapiro,Department of Mathematics, Ohio State University, Columbus, OH 43210, United States Manuel O’Ryan, Instituto de Matematica y Fisica, Universidad de Talca, Casilla 721 Talca, Chile
dc.descriptionIf θ is a regular, symmetric d-linear form on a vector space V, the center of (V,θ) is the set of linear maps f:V→V symmetric relative to θ. If d>2, it is well known that this center is a commutative subalgebra of End(V). When A is a Frobenius algebra with “trace” ℓ, we investigate the trace form φ(x)=ℓ(xd) on A. When A is commutative, A itself is the center of that trace form and the orthogonal group O(V,φ) is closely related to the automorphism group of the algebra A. In non-commutative cases, trace forms are more difficult to analyze. If A is a symmetric algebra, the center of the degree d trace form on A turns out to be N(A+), the nucleus of the induced Jordan algebra
dc.languageen
dc.publisherELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dc.titleCenters of higher degree trace forms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución