dc.creatorvan Diejen, J.F.
dc.creatorEmsiz, E.
dc.date2012-11-28T19:14:33Z
dc.date2012-11-28T19:14:33Z
dc.date2012-03
dc.date.accessioned2017-03-07T14:58:57Z
dc.date.available2017-03-07T14:58:57Z
dc.identifierJOURNAL OF ALGEBRA Volume: 354 Issue: 1 Pages: 180-210 DOI: 10.1016/j.jalgebra.2012.01.005
dc.identifier0021-8693
dc.identifierhttp://dspace.utalca.cl/handle/1950/9082
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/375978
dc.descriptionFor any reduced crystallographic root system, we introduce a unitary representation of the (extended) affine Hecke algebra given by discrete difference-reflection operators acting in a Hilbert space of complex functions on the weight lattice. It is shown that the action of the center under this representation is diagonal on the basis of Macdonald spherical functions. As an application, we compute an explicit Pieri formula for these spherical functions. (C) 2012 Elsevier Inc. All rights reserved.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
dc.subjectSymmetric functions
dc.subjectAffine Hecke algebras
dc.subjectSpherical functions
dc.titleUnitary representations of affine Hecke algebras related to Macdonald spherical functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución