dc.creatorLi, Y.T.
dc.creatorLiu, D.Z.
dc.creatorSun, X.
dc.creatorWang, Z.D.
dc.date2012-08-17T18:59:44Z
dc.date2012-08-17T18:59:44Z
dc.date2011-12
dc.date.accessioned2017-03-07T14:58:02Z
dc.date.available2017-03-07T14:58:02Z
dc.identifierSTATISTICS & PROBABILITY LETTERS Volume: 81 Issue: 12 Pages: 2026-2029 DOI: 10.1016/j.spl.2011.08.016
dc.identifier0167-7152
dc.identifierhttp://dspace.utalca.cl/handle/1950/8756
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/375658
dc.descriptionLiu, DZ (Liu, Dang-Zheng). Univ Talca, Inst Matemat & Fis, Talca, Chile
dc.descriptionThis paper can be thought of as a remark of Li et al. (2010), where the authors studied the eigenvalue distribution mu chi(N) of random block Toeplitz band matrices with given block order m. In this paper, we will give explicit density functions of lim(N ->infinity) mu chi(N), when the bandwidth grows slowly. In fact, these densities are exactly the normalized one-point correlation functions of m x in Gaussian unitary ensemble (CUE for short). The series {lim(N ->infinity) mu chi(N) vertical bar m is an element of N} can be seen as a transition from the standard normal distribution to semicircle distribution. We also show a similar relationship between GOE and block Toeplitz band matrices with symmetric blocks. (C) 2011 Elsevier B.V. All rights reserved.
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.subjectBlock Toeplitz matrix
dc.subjectGUE
dc.subjectGOE
dc.subjectLimit spectral distribution
dc.titleA note on eigenvalues of random block Toeplitz matrices with slowly growing bandwidth
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución