dc.creatorChan, W.K.
dc.creatorEarnest, A.G.
dc.creatorIcaza, M.I.
dc.creatorKim, J.Y.
dc.date2010-08-06T15:40:35Z
dc.date2010-08-06T15:40:35Z
dc.date2007
dc.date.accessioned2017-03-07T14:55:53Z
dc.date.available2017-03-07T14:55:53Z
dc.identifierInternational Journal of Number Theory 3(4):541-556
dc.identifier1793-0421
dc.identifierhttp://dspace.utalca.cl/handle/1950/7777
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/374929
dc.descriptionChan, WK (reprint author), Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
dc.descriptionLet o be the ring of integers in a number field. An integral quadratic form over o is called regular if it represents all integers in o that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over Z. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over Z[1+root 5/2]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over Z[1+root 5/2], and thus extends the corresponding finiteness results for spinor regular quadratic forms over Z obtained in [ 1,3].
dc.format2335 bytes
dc.formattext/html
dc.languageen
dc.publisherWorld Scientific Publ Co.
dc.subjectregular quadratic forms over Q(root 5)
dc.titleFiniteness results for regular definite ternary quadratic forms over Q(root 5)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución