dc.creator | Coulangeon, R. | |
dc.creator | Icaza, M.I. | |
dc.creator | O'Ryan, M. | |
dc.date | 2010-08-06T15:41:29Z | |
dc.date | 2010-08-06T15:41:29Z | |
dc.date | 2007 | |
dc.date.accessioned | 2017-03-07T14:55:53Z | |
dc.date.available | 2017-03-07T14:55:53Z | |
dc.identifier | Experimental Mathematics 16(4): 455-462 | |
dc.identifier | 1058-6458 | |
dc.identifier | http://dspace.utalca.cl/handle/1950/7778 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/374928 | |
dc.description | Coulangeon, R (reprint author), Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-334405 Talence, France | |
dc.description | In this paper we compute gamma(K,2) for K = Q(rho), where rho is the real root of the polynomial x(3) - x(2) + 1 = 0. We refine some techniques introduced in [Baeza et al. 01] to construct all possible sets of minimal vectors for perfect forms. These refinements include a relation between minimal vectors and the Lenstra constant. This construction gives rise to results that can be applied in several other cases. | |
dc.format | 2335 bytes | |
dc.format | text/html | |
dc.language | es_ES | |
dc.publisher | A K Peters Ltd. | |
dc.subject | Humbert forms | |
dc.subject | extreme forms | |
dc.title | Lenstra's constant and extreme forms in number fields | |
dc.type | Artículos de revistas | |