dc.creatorCoulangeon, R.
dc.creatorIcaza, M.I.
dc.creatorO'Ryan, M.
dc.date2010-08-06T15:41:29Z
dc.date2010-08-06T15:41:29Z
dc.date2007
dc.date.accessioned2017-03-07T14:55:53Z
dc.date.available2017-03-07T14:55:53Z
dc.identifierExperimental Mathematics 16(4): 455-462
dc.identifier1058-6458
dc.identifierhttp://dspace.utalca.cl/handle/1950/7778
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/374928
dc.descriptionCoulangeon, R (reprint author), Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-334405 Talence, France
dc.descriptionIn this paper we compute gamma(K,2) for K = Q(rho), where rho is the real root of the polynomial x(3) - x(2) + 1 = 0. We refine some techniques introduced in [Baeza et al. 01] to construct all possible sets of minimal vectors for perfect forms. These refinements include a relation between minimal vectors and the Lenstra constant. This construction gives rise to results that can be applied in several other cases.
dc.format2335 bytes
dc.formattext/html
dc.languagees_ES
dc.publisherA K Peters Ltd.
dc.subjectHumbert forms
dc.subjectextreme forms
dc.titleLenstra's constant and extreme forms in number fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución