es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Machine learning models for early dengue severity prediction

        Fecha
        2016
        Registro en:
        Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 247-258
        9783319479545
        03029743
        https://hdl.handle.net/20.500.12585/8998
        10.1007/978-3-319-47955-2_21
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        55782426500
        57203489700
        55782490400
        http://repositorioslatinoamericanos.uchile.cl/handle/2250/3729136
        Autor
        Caicedo-Torres W.
        Paternina Á.
        Pinzón H.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Infection by dengue-virus is prevalent and a public health issue in tropical countries worldwide. Also, in developing nations, child populations remain at risk of adverse events following an infection by dengue virus, as the necessary care is not always accessible, or health professionals are without means to cheaply and reliably predict how likely is for a patient to experience severe Dengue. Here, we propose a classification model based on Machine Learning techniques, which predicts whether or not a pediatric patient will be admitted into the pediatric Intensive Care Unit, as a proxy for Dengue severity. Different Machine Learning techniques were trained and validated using Stratified 5-Fold Cross-Validation, and the best model was evaluated on a disjoint test set. Cross-Validation results showed an SVM with Gaussian Kernel outperformed the other models considered, with an 0.81 Receiver Operating Characteristic Area Under the Curve (ROC AUC) score. Subsequent results over the test set showed a 0.75 ROC AUC score. Validation and test results are promising and support further research and development. © Springer International Publishing AG 2016.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018