dc.contributorEscalante H.J.
dc.contributorMontes-y-Gomez M.
dc.contributorSegura A.
dc.contributorde Dios Murillo J.
dc.creatorCaicedo-Torres W.
dc.creatorPaternina Á.
dc.creatorPinzón H.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.accessioned2022-09-28T20:28:47Z
dc.date.available2020-03-26T16:32:44Z
dc.date.available2022-09-28T20:28:47Z
dc.date.created2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 247-258
dc.identifier9783319479545
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/20.500.12585/8998
dc.identifier10.1007/978-3-319-47955-2_21
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier55782426500
dc.identifier57203489700
dc.identifier55782490400
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3729136
dc.description.abstractInfection by dengue-virus is prevalent and a public health issue in tropical countries worldwide. Also, in developing nations, child populations remain at risk of adverse events following an infection by dengue virus, as the necessary care is not always accessible, or health professionals are without means to cheaply and reliably predict how likely is for a patient to experience severe Dengue. Here, we propose a classification model based on Machine Learning techniques, which predicts whether or not a pediatric patient will be admitted into the pediatric Intensive Care Unit, as a proxy for Dengue severity. Different Machine Learning techniques were trained and validated using Stratified 5-Fold Cross-Validation, and the best model was evaluated on a disjoint test set. Cross-Validation results showed an SVM with Gaussian Kernel outperformed the other models considered, with an 0.81 Receiver Operating Characteristic Area Under the Curve (ROC AUC) score. Subsequent results over the test set showed a 0.75 ROC AUC score. Validation and test results are promising and support further research and development. © Springer International Publishing AG 2016.
dc.languageeng
dc.publisherSpringer Verlag
dc.relation23 November 2016 through 25 November 2016
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994130153&doi=10.1007%2f978-3-319-47955-2_21&partnerID=40&md5=65a9cbf885b81a5735f5593296b0d244
dc.source15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
dc.titleMachine learning models for early dengue severity prediction


Este ítem pertenece a la siguiente institución