dc.creatorTrofimchuk, S.
dc.creatorFaria, T.
dc.date2007-11-21T22:02:47Z
dc.date2007-11-21T22:02:47Z
dc.date2007
dc.date.accessioned2017-03-07T14:43:08Z
dc.date.available2017-03-07T14:43:08Z
dc.identifierApplied Mathematics and Computation 185 (1):594-603
dc.identifier0096-3003
dc.identifierhttp://dspace.utalca.cl/handle/1950/4059
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/371726
dc.descriptionTrofimchuk, S. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
dc.descriptionThe existence of positive heteroclinic solutions is proven for a class of scalar population models with one discrete delay. Traveling wave solutions for scalar delayed reaction–diffusion equations are also obtained, as perturbations of heteroclinic solutions of the associated equation without diffusion. As an illustration, the results are applied to the Nicholson’s blowflies equation with diffusion in the case of p/δ > e, for which the nonlinearity is non-monotone
dc.format2941 bytes
dc.formattext/html
dc.languageen
dc.publisherElsevier Inc.
dc.subjectDelay differential equations; Delay reaction–diffusion equations; Nicholson’s blowflies equation; Heteroclinic solution; Traveling waves
dc.titlePositive heteroclinics and traveling waves for scalar population models with a single delay
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución