dc.creator | Trofimchuk, S. | |
dc.creator | Faria, T. | |
dc.date | 2007-11-21T22:02:47Z | |
dc.date | 2007-11-21T22:02:47Z | |
dc.date | 2007 | |
dc.date.accessioned | 2017-03-07T14:43:08Z | |
dc.date.available | 2017-03-07T14:43:08Z | |
dc.identifier | Applied Mathematics and Computation 185 (1):594-603 | |
dc.identifier | 0096-3003 | |
dc.identifier | http://dspace.utalca.cl/handle/1950/4059 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/371726 | |
dc.description | Trofimchuk, S. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile | |
dc.description | The existence of positive heteroclinic solutions is proven for a class of scalar population models with one discrete delay. Traveling wave solutions for scalar delayed reaction–diffusion equations are also obtained, as perturbations of heteroclinic solutions of the associated equation without diffusion. As an illustration, the results are applied to the Nicholson’s blowflies equation with diffusion in the case of p/δ > e, for which the nonlinearity is non-monotone | |
dc.format | 2941 bytes | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Elsevier Inc. | |
dc.subject | Delay differential equations; Delay reaction–diffusion equations; Nicholson’s blowflies equation; Heteroclinic solution; Traveling waves | |
dc.title | Positive heteroclinics and traveling waves for scalar population models with a single delay | |
dc.type | Artículos de revistas | |