dc.creatorBaeza, R.
dc.creatorAravire, R.
dc.date2007-09-06T22:50:18Z
dc.date2007-09-06T22:50:18Z
dc.date2003
dc.date.accessioned2017-03-07T14:41:52Z
dc.date.available2017-03-07T14:41:52Z
dc.identifierJournal of Algebra 259 (2):361–414
dc.identifier0021-8693
dc.identifierhttp://dspace.utalca.cl/handle/1950/3835
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/371423
dc.descriptionBaeza R. Instituto de Matemática y Física,Universidad de Talca,Casilla 747,Talca,Chile.
dc.descriptionLet F be a field of characteristic 2. Let ΩnF be the F-space of absolute differential forms over F. There is a homomorphism :ΩnF→ΩnF/dΩn−1F given by (x dx1/x1dxn/xn)=(x2−x) dx1/x1dxn/xn mod dΩFn−1. Let Hn+1(F)=Coker(). We study the behavior of Hn+1(F) under the function field F(φ)/F, where φ=b1,…,bn is an n-fold Pfister form and F(φ) is the function field of the quadric φ=0 over F. We show that . Using Kato's isomorphism of Hn+1(F) with the quotient InWq(F)/In+1Wq(F), where Wq(F) is the Witt group of quadratic forms over F and IW(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InWq(F) is the set of all classes
dc.format2942 bytes
dc.formattext/html
dc.languageen
dc.publisherElsevier Science (USA)
dc.subjectQuadratic forms,Differential forms,Bilinear forms,Witt-groups,Function fields,Generic splitting fields of quadratic forms,Degree of quadraticforms
dc.titleThe behavior of quadratic and differential forms under function field extensions in characteristic two
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución