dc.creator | Baeza, R. | |
dc.creator | Aravire, R. | |
dc.date | 2007-09-06T22:50:18Z | |
dc.date | 2007-09-06T22:50:18Z | |
dc.date | 2003 | |
dc.date.accessioned | 2017-03-07T14:41:52Z | |
dc.date.available | 2017-03-07T14:41:52Z | |
dc.identifier | Journal of Algebra 259 (2):361–414 | |
dc.identifier | 0021-8693 | |
dc.identifier | http://dspace.utalca.cl/handle/1950/3835 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/371423 | |
dc.description | Baeza R. Instituto de Matemática y Física,Universidad de Talca,Casilla 747,Talca,Chile. | |
dc.description | Let F be a field of characteristic 2. Let ΩnF be the F-space of absolute differential forms over F. There is a homomorphism :ΩnF→ΩnF/dΩn−1F given by (x dx1/x1dxn/xn)=(x2−x) dx1/x1dxn/xn mod dΩFn−1. Let Hn+1(F)=Coker(). We study the behavior of Hn+1(F) under the function field F(φ)/F, where φ=b1,…,bn is an n-fold Pfister form and F(φ) is the function field of the quadric φ=0 over F. We show that . Using Kato's isomorphism of Hn+1(F) with the quotient InWq(F)/In+1Wq(F), where Wq(F) is the Witt group of quadratic forms over F and IW(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InWq(F) is the set of all classes | |
dc.format | 2942 bytes | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Elsevier Science (USA) | |
dc.subject | Quadratic forms,Differential forms,Bilinear forms,Witt-groups,Function fields,Generic splitting fields of quadratic forms,Degree of quadraticforms | |
dc.title | The behavior of quadratic and differential forms under function field extensions in characteristic two | |
dc.type | Artículos de revistas | |