dc.creatorDesrosiers, P.
dc.creatorLapointe, L.
dc.creatorMathieu, P.
dc.date2005-10-12T22:47:36Z
dc.date2005-10-12T22:47:36Z
dc.date2004-11
dc.date.accessioned2017-03-07T14:32:34Z
dc.date.available2017-03-07T14:32:34Z
dc.identifierCzechoslovak Journal of Physics 54 (11): 1223-1228
dc.identifier0011-4626
dc.identifierhttp://dx.doi.org/10.1007/s10582-004-9782-2
dc.identifierhttp://dspace.utalca.cl/handle/1950/1664
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/368913
dc.descriptionLapointe, L. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile.
dc.descriptionJack superpolynomials are eigenfunctions of the supersymmetric extension of the quantum trigonometric Calogero-Moser-Sutherland Hamiltonian. They are orthogonal with respect to the scalar product, dubbed physical, that is naturally induced by this quantum-mechanical problem. But Jack superpolynomials can also be defined more combinatorially, starting from the multiplicative bases of symmetric superpolynomials, enforcing orthogonality with respect to a one-parameter deformation of the combinatorial scalar product. Both constructions turn out to be equivalent
dc.format1970 bytes
dc.formattext/html
dc.languageen
dc.publisherSpringer Netherlands
dc.subjectsupersymmetric quantum mechanics
dc.subjectsymmetric superpolynomials
dc.titleJack superpolynomials: physical and combinatorial definitions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución