dc.creator | Desrosiers, P. | |
dc.creator | Lapointe, L. | |
dc.creator | Mathieu, P. | |
dc.date | 2005-10-12T22:47:36Z | |
dc.date | 2005-10-12T22:47:36Z | |
dc.date | 2004-11 | |
dc.date.accessioned | 2017-03-07T14:32:34Z | |
dc.date.available | 2017-03-07T14:32:34Z | |
dc.identifier | Czechoslovak Journal of Physics 54 (11): 1223-1228 | |
dc.identifier | 0011-4626 | |
dc.identifier | http://dx.doi.org/10.1007/s10582-004-9782-2 | |
dc.identifier | http://dspace.utalca.cl/handle/1950/1664 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/368913 | |
dc.description | Lapointe, L. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile. | |
dc.description | Jack superpolynomials are eigenfunctions of the supersymmetric extension of the quantum trigonometric Calogero-Moser-Sutherland Hamiltonian. They are orthogonal with respect to the scalar product, dubbed physical, that is naturally induced by this quantum-mechanical problem. But Jack superpolynomials can also be defined more combinatorially, starting from the multiplicative bases of symmetric superpolynomials, enforcing orthogonality with respect to a one-parameter deformation of the combinatorial scalar product. Both constructions turn out to be equivalent | |
dc.format | 1970 bytes | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Springer Netherlands | |
dc.subject | supersymmetric quantum mechanics | |
dc.subject | symmetric superpolynomials | |
dc.title | Jack superpolynomials: physical and combinatorial definitions | |
dc.type | Artículos de revistas | |