dc.creatorTrofimchuk, E.
dc.creatorTrofimchuk, S.
dc.date2005-10-07T15:20:17Z
dc.date2005-10-07T15:20:17Z
dc.date2005-05
dc.date.accessioned2017-03-07T14:32:31Z
dc.date.available2017-03-07T14:32:31Z
dc.identifierDiscrete and Continuous Dynamical Systems-Series B 5 (2): 461-468
dc.identifier1531-3492
dc.identifierhttp://dspace.utalca.cl/handle/1950/1556
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/368888
dc.descriptionTrofimchuk, S. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile.
dc.descriptionWe investigate global stability of the regulated logistic growth model (RLC) n'(t) = rn(t)(1-n(t-h)/K-cu(t)), u'(t) = -au(t)+bn(t-h). It was proposed by Gopalsamy and Weng [1, 2] and studied recently in [4, 5, 6, 9]. Compared with the previous results, our stability condition is of different kind and has the asymptotical form. Namely, we prove that for the fixed parameters K and mu = bcK/a (which determine the levels of steady states in the delayed logistic equation n'(t) rn(t)(1 - n(t - h)/K) and in RLG) and for every hr < root 2 the regulated logistic growth model is globally stable if we take the dissipation parameter a sufficiently large. On the other hand, studying the local stability of the positive steady state, we observe the improvement of stability for the small values of a: in this case, the inequality rh < pi(1 + mu)/2 guaranties such a stability
dc.format5331 bytes
dc.formatimage/jpeg
dc.languageen
dc.publisherAmerican Institute of Mathematical Sciences
dc.subjectSchwarz derivative
dc.subjectglobal stability
dc.subjectdelay differential equations
dc.subjectregulated logistic model
dc.titleGlobal stability in a regulated logistic growth model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución