Control embebido de sistemas multivariables no lineales

dc.contributorGiraldo Suarez , Eduardo
dc.contributorControl Automatico
dc.creatorRíos Noreña , Luis Andrés
dc.date2022-02-11T15:51:20Z
dc.date2022-02-11T15:51:20Z
dc.date2021
dc.date.accessioned2022-09-23T21:20:26Z
dc.date.available2022-09-23T21:20:26Z
dc.identifierhttps://hdl.handle.net/11059/13860
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3528577
dc.descriptionIn this document a brief review of the real-time systems generalities with emphasis in the state-space use lineal control such as LQR( Linear quadratic regulator) and Full state feedback control. where to use implementation of a pendubot system is used, the device is from the manufacturer quanser which provides different mechatronics models for applications in various control strategies. In this cases, as the control card that comes by default is not compatible with current PCs, it was necessary to change it for a TI LAUCHPAD F28379D, which its manufacturer Texas instru ments has a complement for the MATLAB®suite with which it can be used with its SIMULINK®tool. In addition, simulation was carried out in the same software already mentioned for non-linear controllers using the same plant as the implemen tation in this case the pendubot system, where the performance of sliding planes is compared with linearization feedback, on the other hand, the error was obtained at starting from the methods of least squares of the error and ITAE applied both for the implementation and the simulation.
dc.descriptionMaestría
dc.descriptionMagíster en Ingeniería Eléctrica
dc.descriptionEl proyecto de grado consiste en implementar distintas estrategias de controladores lineal, y comparar su rendimiento durante la ejecución, en una planta subamortiguada multivariable no lineal, en este caso para un sistema PENDUBOT en donde consiste en poseer un par de eslabones anclado uno con respecto a otro cuya entrada es el torque proporcionado por un moto DC, y sus salidas son el ángulo de los eslabones respectivos, además se utilizará simulación para la misma planta con la finalidad de realizar una comparación entre controladores no-lineales, en donde se medirá su desempeño.
dc.descriptionContents 0.1 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Objectives 2 1.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Introduction 3 2.1 Generalities of the Real-time systems . . . . . . . . . . . . . . . . . . 3 2.1.1 The real-time systems definition . . . . . . . . . . . . . . . . 3 2.1.2 Pendubot definition . . . . . . . . . . . . . . . . . . . . . . . . 4 3 the pendubot system modeling 5 3.1 Pendubot modeling for linear controller . . . . . . . . . . . . . . . . . 5 3.1.1 Linear approximation . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Top-position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 Middle position . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Pendubot modeling for non-linear controller . . . . . . . . . . . . . . 10 4 controller design 13 4.1 linear controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 Robust pole assignment in linear state feedback . . . . . . . . 13 4.1.2 Linear Quadratic Regulator (LQR) . . . . . . . . . . . . . . . 13 4.2 non-linear controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.1 Feedback linearization of mimo systems . . . . . . . . . . . . . 14 4.2.2 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . 16 5 Simulation Results 18 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1.1 Linear state feedback control . . . . . . . . . . . . . . . . . . . 19 5.1.2 Linear-Quadratic Regulator Control . . . . . . . . . . . . . . . 20 5.1.3 Non-linear control . . . . . . . . . . . . . . . . . . . . . . . . . 21 vii Contents viii 5.2 Implementation of linear controllers for the Pendubot system . . . . . 21 5.2.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.2 blocks diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.3 Error comparisons . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Simulation of non-linear controllers for the Pendubot system . . . . . 26 5.3.1 Error comparisons . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.2 blocks diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Conclusions 31
dc.format42 pag.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherMaestría en Ingeniería Eléctrica
dc.relationX. Fan, “Introduction to Embedded and Real-Time Systems,” in Real-Time Embedded Systems. Elsevier, 2015, pp. 3–13.
dc.relationTexas Instruments, “LAUNCHXL-F28379D Overview User’s Guide LAUNCHXL-F28379D Overview,” 2016. [Online]. Available: https: //www.ti.com/tool/LAUNCHXL-F28379D
dc.relationAmerican Automatic Control Council., Proceedings of the 2008 American Con trol Conference : the Westin Seattle, Seattle, WA, USA, June 11-13, 2008. [American Automatic Control Council], 2008
dc.relationK. Guemghar, “THÈSE N O 3175 (2005) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ON THE USE OF INPUT-OUTPUT FEEDBACK LINEARIZATION TECHNIQUES FOR THE CONTROL OF NONMINIMUM-PHASE SYSTEMS,” ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Tech. Rep., 2005.
dc.relationS. Rudra and R. K. Barai, “Design of block backstepping based nonlinear state feedback controller for pendubot,” in 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016, pp. 1–5.
dc.relationA.-W. A. Saif, “Strong stablization of the non-linear pendubot system,” in 2015 IEEE 12th International Multi-Conference on Systems, Signals Devices (SSD15), 2015, pp. 1–7.
dc.relationT. V. Toan, T. T. Ha, and T. V. Do, “Hybrid control for swing up and balancing pendubot system: An experimental result,” in 2017 International Conference on System Science and Engineering (ICSSE), 2017, pp. 450–453.
dc.relationM. Salaj, M. Gulan, and B. Rohal’-Ilkiv, “Pendubot control scheme based on nonlinear mpc and mhe exploiting parallelization,” in 2015 IEEE 19th Interna tional Conference on Intelligent Engineering Systems (INES), 2015, pp. 353– 358.
dc.relationM. Gulan, M. Salaj, and B. Rohal’-Ilkiv, “Nonlinear model predictive control with moving horizon estimation of a pendubot system,” in 2015 20th Interna tional Conference on Process Control (PC), 2015, pp. 226–231.
dc.relationC. Wei, T. Chai, X. Xin, X. Chen, L. Wang, and Y. H. Chen, “A Signal Compensation-Based Robust Swing-up and Balance Control Method for the Pendubot,” IEEE Transactions on Industrial Electronics, 2021.
dc.relationD. J. Block and M. W. Spong, “mA =For Advancing Mobility and Sea Air and Space, Mechanical Design and Control of the Pendubot,” university of llinois, llinois, Tech. Rep., 3 1995.
dc.relationJ. A. C. Meesters, D. Lizarraga, and H. Nijmeijer, “The mechatronics kit: first survey,” Technische Universiteit Eindhoven, Eindhoven, Tech. Rep., 11 2004. [Online]. Available: https://research.tue.nl/en/publications/ the-mechatronics-kit-first-survey
dc.relationW. Xu and J. Liu, “Identification of underactuated manipulator based on ge netic algorithm,” in IEEE 10th International Conference on Industrial Infor matics, 2012, pp. 653–656
dc.relationJ. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment in linear state feedback,” International Journal of Control, vol. 41, no. 5, pp. 1129–1155, 1985.
dc.relationD. S. D. S. Naidu, Optimal control systems. CRC Press, 2003.
dc.relationA. Odry, E. Burkus, and P. Odry, LQG Control of a Two-Wheeled Mobile Pendulum System. Hungary: IARIA, 2015.
dc.relationMourad Boufadene, “Nonlinear Control Systems Using MATLAB ®,” Taylor & Francis Group, Tech. Rep., 2019.
dc.relationL. A. Rios-Noreña, J. S. Velez-Ramirez, and E. Giraldo, “Real-Time Optimal Embedded Control of a Double Inverted Pendulum,” International Journal of Computer Science, pp. 1–6, 2021.
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subjectEmbedded systems-Design.
dc.subjectEmbedded control
dc.subjectMicroprocesador
dc.subjectControl embebido
dc.subjectControl óptimo
dc.subjectPendubot
dc.titleEmbedded control of non-linear multivariable systems
dc.titleControl embebido de sistemas multivariables no lineales
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución