dc.contributorUniversidad EAFIT. Departamento de Ciencias
dc.contributorMatemáticas y Aplicaciones
dc.creatorVelez, Juan D.
dc.creatorHernandez, Juan P.
dc.creatorCadavid, Carlos A.
dc.creatorVelez, Juan D.
dc.creatorHernandez, Juan P.
dc.creatorCadavid, Carlos A.
dc.date.accessioned2021-04-12T14:04:21Z
dc.date.accessioned2022-09-23T21:04:40Z
dc.date.available2021-04-12T14:04:21Z
dc.date.available2022-09-23T21:04:40Z
dc.date.created2021-04-12T14:04:21Z
dc.date.issued2017-06-01
dc.identifier19322232
dc.identifier19322240
dc.identifierWOS;000412828200002
dc.identifierSCOPUS;2-s2.0-85032878328
dc.identifierhttp://hdl.handle.net/10784/27708
dc.identifier10.1145/3151131.3151132
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3525014
dc.description.abstractA method for computing limits of quotients of real analytic functions in two variables was developed in [4]. In this article we generalize the results obtained in that paper to the case of quotients q = f(x, y, z)/g(x, y, z) of polynomial functions in three variables with rational coefficients. The main idea consists in examining the behavior of the function q along certain real variety X(q) (the discriminant variety associated to q). The original problem is then solved by reducing to the case of functions of two variables. The inductive step is provided by the key fact that any algebraic curve is birationally equivalent to a plane curve. Our main result is summarized in Theorem 2. In Section 4 we describe an effective method for computing such limits. We provide a high level description of an algorithm that generalizes the one developed in [4], now available in Maple as the limit/multi command.
dc.languageeng
dc.publisherASSOC COMPUTING MACHINERY
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85032878328&doi=10.1145%2f3151131.3151132&partnerID=40&md5=426a974ec7d3b564e9685c249685b447
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1932-2232
dc.sourceACM Communications in Computer Algebra
dc.subjectComputation theory
dc.subjectFunctions
dc.subjectA-plane
dc.subjectAlgebraic curves
dc.subjectAnalytic functions
dc.subjectDiscriminant varieties
dc.subjectHigh level description
dc.subjectPolynomial functions
dc.subjectRational coefficients
dc.subjectRational functions
dc.titleLimits of quotients of polynomial functions in three variables
dc.typearticle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución