es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Jorge Tadeo Lozano (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Jorge Tadeo Lozano (Colombia)
        • Ver ítem

        Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models

        Registro en:
        0960-0779
        https://doi.org/10.1016/j.chaos.2020.109946
        http://hdl.handle.net/20.500.12010/10436
        https://doi.org/10.1016/j.chaos.2020.109946
        http://repositorioslatinoamericanos.uchile.cl/handle/2250/3506675
        Autor
        Torrealba-Rodriguez, O.
        Conde-Gutiérrez, R.A.
        Hernández-Javier, A.L.
        Institución
        • Universidad Jorge Tadeo Lozano (Colombia)
        Resumen
        This work presents the modeling and prediction of cases of COVID-19 infection in Mexico through mathematical and computational models using only the confirmed cases provided by the daily technical report COVID-19 MEXICO until May 8th. The mathematical models: Gompertz and Logistic, as well as the computational model: Artificial Neural Network were applied to carry out the modeling of the number of cases of COVID-19 infection from February 27th to May 8th. The results show a good fit between the observed data and those obtained by the Gompertz, Logistic and Artificial Neural Networks models with an R2 of 0.9998, 0.9996, 0.9999, respectively. The same mathematical models and inverse Artificial Neural Network were applied to predict the number of cases of COVID-19 infection from May 9th to 16th in order to analyze tendencies and extrapolate the projection until the end of the epidemic. The Gompertz model predicts a total of 47,576 cases, the Logistic model a total of 42,131 cases, and the inverse artificial neural network model a total of 44,245 as of May 16th. Finally, to predict the total number of COVID-19 infected until the end of the epidemic, the Gompertz, Logistic and inverse Artificial Neural Network model were used, predicting 469,917, 59,470 and 70,714 cases, respectively.
        Materias
        Gompertz model
        Logistic model
        inverse Artificial Neural Network model
        COVID-19 modelling
        COVID-19 prediction

        Mostrar el registro completo del ítem

        Ítems relacionados

        Mostrando ítems relacionados por Título, autor o materia.

        • Micro-organismes et matiere organique du sol (modele MOMOS): bilan de 20 ans de modelisation basée sur le tracage isotopique in situ 

          Pansu, Marc; Sarmiento, Lina; Bottner, P.
        • On Paradigms, Theories and Models 

          KHAN, HEIDER
        • Capacidades tecnológicas agroalimentarías de México en el modelo sustitutivo y en el modelo liberalizador 

          NÚÑEZ, ISMAEL

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018