Colombia | Artículo de revista
dc.creatorRestrepo Trujillo, J
dc.creatorMoreno-Chuquen, Ricardo
dc.creatorJiménez garcía, Francy Nelly
dc.date.accessioned2021-09-29T20:28:19Z
dc.date.accessioned2022-09-22T18:44:37Z
dc.date.available2021-09-29T20:28:19Z
dc.date.available2022-09-22T18:44:37Z
dc.date.created2021-09-29T20:28:19Z
dc.date.issued2020-08-17
dc.identifier21464553
dc.identifierhttps://hdl.handle.net/10614/13289
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457667
dc.description.abstractThe phenomena of climatic variability such as El Niño affect the expansion planning of electricity supply systems with hydroelectric power plants due to the uncertainty presented in the variables of rainfall patterns, temperature, wind, solar radiation changes, among others. The El Niño affects the electricity generation in Colombia, Venezuela and northwestern Brazil due to severe droughts that reduce water flows in rivers and water volume in dams. While in Peru, Paraguay, Bolivia, Uruguay, Argentina and southern Brazil, causes heavy rains that lead to an increase in reservoirs. Recent findings provide sufficient evidence on how climate change modifies the patterns of duration, frequency and intensity of El Niño and therefore will introduce additional uncertainties to the expansion planning of electricity generation systems in countries that uses predominantly hydroelectric power. The vulnerability of electricity supply systems with a significant participation of hydroelectric power plants in Colombia, Brazil, Ecuador, Peru, Panama, Canada, Norway, Costa Rica and New Zealand is associated with fluctuations in the availability of water resources. This document aims to analyze the current plans for the expansion of electric power generation systems by the aforementioned countries in the context of climate change in medium and long term. Additionally, this document provides a detailed analysis of the situation of electricity supply systems in Colombia
dc.languagespa
dc.relationVolumen 10, número 6 (2020)
dc.relation74
dc.relationNúmero 6
dc.relation66
dc.relationVolumen 10
dc.relationRestrepo Trujillo, J., Moreno Chuquen, R., Jiménez García F. N. (2020). Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia. International Journal of Energy Economics and Policy. (Vol. 10 (6), pp. 66-74. DOI: https://doi.org/10.32479/ijeep.9813
dc.relationInternational Journal of Energy Economics and Policy
dc.relationAita, P.G. (2006), Perú potencial energético: Propuestas y desafíos. Revista de Derecho Administrativo, 16, 217-231
dc.relationAlley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Zwiers, F. (2007), Intergovernmental Panel on Climate Change Climate Change 2007: The Physical Science Basis Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers IPCC WGI Fourth Assessment Report
dc.relationAndrade, E.M., Cosenza, J.P., Rosa, L.P., Lacerda, G. (2012), The vulnerability of hydroelectric generation in the Nortneast of Barzil: The environmental and business risks for CHESF. Renewable and Sustainable Energy Reviews, 16, 5760-5769
dc.relationAustralian Bureau of Meteorology, Commonwealth Scientific and Industrial Research Organisation. (2011), Climate Change in the Pacific: Scientific Assessment and New Research, Regional Overview. Vol. 1. Canberra: Commonwealth Scientific and Industrial Research Organisation
dc.relationCai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., McPhaden, M.J. (2018), Increased variability of eastern pacific El Niño under greenhouse warming. Nature, 564(7735), 201-206
dc.relationCarvajal, P.E., Li, F.G.N., Soria, R., Cronin, J., Anandarajah, G., Mulugetta, Y. (2019), Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, 86-99.
dc.relationChilkoti, V., Bolisetti, T., Balachandar, R. (2017), Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renewable Energy, 109, 510-517
dc.relationComisión de Regulación de Energía y Gas. (2006), Resolución 071 de 2006. Available from: http://www.apolo.creg.gov.co/publicac.nsf/ indice01/resolucion-2006-creg071-2006
dc.relationDe Jong, P., Souza, C., Santos, A., Dargaville, R., Kiperstok, A., Andrade, E. (2018), Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540-1553
dc.relationDubrovsky, H., Sbroiavacca, N.D., Nadal, G., Lisperguer, R.C. (2019), Rol y Perspectivas del Sector Eléctrico en la Transformación Energética de América Latina-Aportes a la Implementación del Observatorio Regional Sobre Energías Sostenibles. Available from: http://www. cepal.org/apps
dc.relationGovernment of Canada. (2015), Indicators of Climate Variability and Change Natural Resources Canada. Available from: http://www. nrcan.gc.ca/environment/resources/publications/impacts-adaptation/ reports/assessments/2008/ch8/10387. [Last accessed on 2018 Jul 26].
dc.relationInstituto Costarricense de Electricidad. (2016a), Plan de Expansion de la Generacion Electrica Periodo 2016-2035. Available from: http:// www.grupoice.com
dc.relationInstituto Costarricense de Electricidad. (2017), Sistema Eléctrico de Costa Rica se Consolida Como Modelo de Generación RenovablePresidencia de la República de Costa Rica. Available from: https:// www.presidencia.go.cr/comunicados/2017/12/sistema-electricode-costa-rica-se-consolida-como-modelo-de-generacion-renovable. [Last accessed on 2018 Jul 21].
dc.relationnternational Energy Agency (IEA). (2016), Energy Policies of International Energy Agengy-Norway 2017 Review. International Energy Agency (IEA). Available from: http://www.iea.org/publications/ freepublications/publication/energypoliciesofieacountriesnorway2017. pdf
dc.relationInternational Energy Agency. (2015), Statistics Costa Rica-Total Primary Energy Supply (TPES) by Source (Chart). Available from: https:// www.iea.org/statistics/?country=costarica&year=2016&category=k ey indicators&indicator=tpesbysource&mode=chart&categorybrow se=false&datatable=balances&showdatatable=false. [Last accessed on 2018 Oct 06
dc.relationInternational Energy Agency. (2017a), Brazil. Available from: https:// www.iea.org/countries/brazil. [Last accessed on 2019 Feb 09
dc.relationInternational Energy Agency. (2017f), Norway. Available from: https:// www.iea.org/countries/norway. [Last accessed on 2019 Feb 09
dc.relationInternational Energy Agency. (2017h), Venezuela. Available from: https:// www.iea.org/countries/venezuela. [Last accessed on 2019 Feb 09
dc.relationIPCC. (2007), Cambio Climático 2007: Informe de Síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de Evaluación del Grupo Intergubernamental de Expertos Sobre el Cambio Climático. Vol. 446. Geneva: Intergovernmental Panel on Climate Change
dc.relationIrandoust, M. (2018), Innovations and renewables in the Nordic countries: A panel causality approach. Technology in Society, 54, 87-92
dc.relationMinisterio de Energía y Minas. (2016), Anuario Ejecutivo de Electricidad 2016 Gobierno del Perú. Available from: https://www.gob.pe/ institucion/minem/informes-publicaciones/112025-anuarioejecutivo-de-electricidad-2016
dc.relationMiremadi, I., Saboohi, Y. (2018), Planning for investment in energy innovation: Developing an analytical tool to explore the impact of knowledge flow. International Journal of Energy Economics and Policy, 8(2), 7-19
dc.relationNeelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.F., Wakata, Y., Yamagata, T., Zebiak, S.E. (1998), ENSO theory. Journal of Geophysical Research: Oceans, 103, 14261-14290
dc.relationOllila, J. (2017), Nordic Energy Co-Operation: Strong Today-Stronger Tomorrow. Copenhagen: Nordisk Ministerråd
dc.relationPaz, J., Kelman, R., Navas, S., Okamura, L., Feliu, E., Del Jesus, M. (2019), Vulnerabilidad al Cambio Climático y Medidas de Adaptación de los Sistemas Hidroeléctricos en los Países Andinos Publications. Available from: https://www.publications.iadb.org/publications/ spanish/document/Vulnerabilidad_al_cambio_climático_y_ medidas_de_adaptación_de_los_sistemas_hidroeléctricos_en_los_ países_andinos.pdf
dc.relationPrograma de las Naciones Unidas Para el Desarrollo. (2015), Plan Energético Nacional 2015-2050. Available from: http://www.pa.undp. org/content/panama/es/home/search.html?q=plan+energético. [Last accessed on 2019 Jan 28]
dc.relationSamprogna, G., Rodriguez, D., Tomasella, J., Siqueira, J. (2015), Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, 4, 41-59
dc.relationSociedad. (2016), Represa Itaipú, Símbolo de Energía Limpia en Paraguay, Lucha Contra El Niño-Socieda-d-Diario La Informacion, La Información. Available from: https://www. lainformacion.com/catastrofes-y-accidentes/inundaciones/represaitaipu-simbolo-de-energia-limpia-en-paraguay-lucha-contra-elnino_l6qrho5xdreaop5d3ake76
dc.relationTrenberth, K.E., Stepaniak, D.P., Trenberth, K.E., Stepaniak, D.P. (2001), Indices of El Niño evolution. Journal of Climate, 14(8), 1697-1701
dc.relationUnión Temporal ACOM-OPTIM. (2013), Estudio Para Determinar la Vulnerabilidad y las Opciones de Adaptación del Sector Energético Colombiano Frente al Cambio Climático, Bogotá. Available from: https://www.drive.google.com/drive/folders/1xljrs07vht-m78- 2jiuje4c_a4q9htq0
dc.relationXM Compañía de Expertos en Mercados. (2019b), Generación del SIN. Available from: http://www.informesanuales.xm.com.co/2017/ sitepages/operacion/3-6-generacion-del-sin.aspx. [Last accessed on 2019 May 22
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados International Journal of Energy Economics and Policy
dc.subjectFenómeno del niño
dc.titleStrategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución