dc.contributorFonseca-Mendoza, Dora Janeth
dc.creatorParada Niño, Laura Catalina
dc.date.accessioned2020-08-18T21:56:12Z
dc.date.accessioned2022-09-22T15:10:45Z
dc.date.available2020-08-18T21:56:12Z
dc.date.available2022-09-22T15:10:45Z
dc.date.created2020-08-18T21:56:12Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/26612
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3445749
dc.description.abstractPreeclampsia is a public health problem, where early diagnosis allows is vital. Given the potential implication of STOX1 in the molecular etiology of preeclampsia, this work analyzed ORF and describe genetic variants in a sample of Colombian women with severe preeclampsia and HELLP syndrome.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Ciencias con Énfasis en Genética Humana
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceAmerican College of Obstetricians and Gynecologists, & American College of Obstetricians and Gynecologists (Eds.). (2013). Hypertension in pregnancy. American College of Obstetricians and Gynecologists.
dc.sourceAouache, R., Biquard, L., Vaiman, D., & Miralles, F. (2018). Oxidative Stress in Preeclampsia and Placental Diseases. International Journal of Molecular Sciences, 19(5), 1496. https://doi.org/10.3390/ijms19051496
dc.sourceBarnhart, L. (2015). HELLP Syndrome and the Effects on the Neonate. Neonatal Network, 34(5), 269-273. https://doi.org/10.1891/0730-0832.34.5.269
dc.sourceBello Uyaban, S. P. B. (2018). IDENTIFICACIÓN DE FACTORES DE TRANSCRIPCIÓN DE UNIÓN DIRECTA A LA REGIÓN PROMOTORA DE STOX. Tesis de Maestría. Universidad Colegio Mayor Nuestra Señora del Rosario.
dc.sourceBerends, A., Bertoli-Avella, A., De Groot, C., Van Duijn, C., Oostra, B., & Steegers, E. (2007). Short communication: STOX1 gene in pre-eclampsia and intrauterine growth restriction. BJOG: An International Journal of Obstetrics & Gynaecology, 114(9), 1163-1167. https://doi.org/10.1111/j.1471-0528.2007.01414.x
dc.sourceBuurma, A. J., Turner, R. J., Driessen, J. H. M., Mooyaart, A. L., Schoones, J. W., Bruijn, J. A., Bloemenkamp, K. W. M., Dekkers, O. M., & Baelde, H. J. (2013). Genetic variants in pre-eclampsia: A meta-analysis. Human Reproduction Update, 19(3), 289-303. https://doi.org/10.1093/humupd/dms060
dc.sourceChaiworapongsa, T., Chaemsaithong, P., Yeo, L., & Romero, R. (2014). Pre-eclampsia part 1: Current understanding of its pathophysiology. Nature Reviews Nephrology, 10(8), 466-480. https://doi.org/10.1038/nrneph.2014.102
dc.sourceChau, K., Hennessy, A., & Makris, A. (2017). Placental growth factor and pre-eclampsia. Journal of Human Hypertension, 31(12), 782-786. https://doi.org/10.1038/jhh.2017.61
dc.sourceChen, C.-P., Chen, C.-Y., Yang, Y.-C., Su, T.-H., & Chen, H. (2004). Decreased Placental GCM1 (Glial Cells Missing) Gene Expression in Pre-eclampsia. Placenta, 25(5), 413-421. https://doi.org/10.1016/j.placenta.2003.10.014
dc.sourceChiang, M.-H., Liang, F.-Y., Chen, C.-P., Chang, C.-W., Cheong, M.-L., Wang, L.-J., Liang, C.-Y., Lin, F.-Y., Chou, C.-C., & Chen, H. (2009). Mechanism of Hypoxia-induced GCM1 Degradation: IMPLICATIONS FOR THE PATHOGENESIS OF PREECLAMPSIA. Journal of Biological Chemistry, 284(26), 17411-17419. https://doi.org/10.1074/jbc.M109.016170
dc.sourceChiu, Y.-H., Yang, M.-R., Wang, L.-J., Chen, M.-H., Chang, G.-D., & Chen, H. (2018). New insights into the regulation of placental growth factor gene expression by the transcription factors GCM1 and DLX3 in human placenta. Journal of Biological Chemistry, 293(25), 9801-9811. https://doi.org/10.1074/jbc.RA117.001384
dc.sourceCordell, H. J. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11(20), 2463-2468. https://doi.org/10.1093/hmg/11.20.2463
dc.sourceCorrea, P. J., Palmeiro, Y., Soto, M. J., Ugarte, C., & Illanes, S. E. (2016). Etiopathogenesis, prediction, and prevention of preeclampsia. Hypertension in Pregnancy, 35(3), 280-294. https://doi.org/10.1080/10641955.2016.1181180
dc.sourceCraici, I. M., Wagner, S. J., Weissgerber, T. L., Grande, J. P., & Garovic, V. D. (2014). Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney International, 86(2), 275-285. https://doi.org/10.1038/ki.2014.17
dc.sourceDitisheim, A., & Sibai, B. M. (2017). Diagnosis and Management of HELLP Syndrome Complicated by Liver Hematoma: Clinical Obstetrics and Gynecology, 60(1), 190-197. https://doi.org/10.1097/GRF.0000000000000253
dc.sourceDoridot, L., Passet, B., Méhats, C., Rigourd, V., Barbaux, S., Ducat, A., Mondon, F., Vilotte, M., Castille, J., Breuiller-Fouché, M., Daniel, N., le Provost, F., Bauchet, A.-L., Baudrie, V., Hertig, A., Buffat, C., Simeoni, U., Germain, G., Vilotte, J.-L., & Vaiman, D. (2013). Preeclampsia-Like Symptoms Induced in Mice by Fetoplacental Expression of STOX1 Are Reversed by Aspirin Treatment. Hypertension, 61(3), 662-668. https://doi.org/10.1161/HYPERTENSIONAHA.111.202994
dc.sourceDusse, L. M., Alpoim, P. N., Silva, J. T., Rios, D. R. A., Brandão, A. H., & Cabral, A. C. V. (2015). Revisiting HELLP syndrome. Clinica Chimica Acta, 451, 117-120. https://doi.org/10.1016/j.cca.2015.10.024
dc.sourceEl-Sayed, A. A. F. (2017). Preeclampsia: A review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwanese Journal of Obstetrics and Gynecology, 56(5), 593-598. https://doi.org/10.1016/j.tjog.2017.08.004
dc.sourceFornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., Richmond, P. A., Modi, B. P., Correard, S., Gheorghe, M., Baranašić, D., Santana-Garcia, W., Tan, G., Chèneby, J., Ballester, B., Parcy, F., Sandelin, A., Lenhard, B., Wasserman, W. W., & Mathelier, A. (2019). JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, gkz1001. https://doi.org/10.1093/nar/gkz1001
dc.sourceGlotov, A. S., Kazakov, S. V., Vashukova, E. S., Pakin, V. S., Danilova, M. M., Nasykhova, Y. A., Masharsky, A. E., Mozgovaya, E. V., Eremeeva, D. R., Zainullina, M. S., & Baranov, V. S. (2019). Targeted sequencing analysis of ACVR2A gene identifies novel risk variants associated with preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine, 32(17), 2790-2796. https://doi.org/10.1080/14767058.2018.1449204
dc.sourceGray, K. J., Saxena, R., & Karumanchi, S. A. (2018). Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1 , a gene involved in the regulation of angiogenesis. American Journal of Obstetrics and Gynecology, 218(2), 211-218. https://doi.org/10.1016/j.ajog.2017.11.562
dc.sourceHansen, A. T., Bernth Jensen, J. M., Hvas, A.-M., & Christiansen, M. (2018). The genetic component of preeclampsia: A whole-exome sequencing study. PLOS ONE, 13(5), e0197217. https://doi.org/10.1371/journal.pone.0197217
dc.sourceHaram, K., Mortensen, J. H., & Nagy, B. (2014). Genetic Aspects of Preeclampsia and the HELLP Syndrome. Journal of Pregnancy, 2014, 1-13. https://doi.org/10.1155/2014/910751
dc.sourceHaram, K., Svendsen, E., & Abildgaard, U. (2009). The HELLP syndrome: Clinical issues and management. A Review. BMC Pregnancy and Childbirth, 9(1), 8. https://doi.org/10.1186/1471-2393-9-8
dc.sourceHuppertz, B. (2018). The Critical Role of Abnormal Trophoblast Development in the Etiology of Preeclampsia. Current Pharmaceutical Biotechnology, 19(10), 771-780. https://doi.org/10.2174/1389201019666180427110547
dc.sourceHutcheon, J. A., Lisonkova, S., & Joseph, K. S. (2011). Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology, 25(4), 391-403. https://doi.org/10.1016/j.bpobgyn.2011.01.006
dc.sourceIglesias-Platas, I., Monk, D., Jebbink, J., Buimer, M., Boer, K., van der Post, J., Hills, F., Apostolidou, S., Ris-Stalpers, C., Stanier, P., & Moore, G. E. (2007). STOX1 is not imprinted and is not likely to be involved in preeclampsia. Nature Genetics, 39(3), 279-280. https://doi.org/10.1038/ng0307-279
dc.sourceJebbink, J., Wolters, A., Fernando, F., Afink, G., van der Post, J., & Ris-Stalpers, C. (2012). Molecular genetics of preeclampsia and HELLP syndrome—A review. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(12), 1960-1969. https://doi.org/10.1016/j.bbadis.2012.08.004
dc.sourceKivinen, K., Peterson, H., Hiltunen, L., Laivuori, H., Heino, S., Tiala, I., Knuutila, S., Rasi, V., & Kere, J. (2007). Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. European Journal of Human Genetics, 15(4), 494-497. https://doi.org/10.1038/sj.ejhg.5201788
dc.sourceKivinen, K., Peterson, H., Hiltunen, L., Laivuori, H., Heino, S., Tiala, I., Knuutila, S., Rasi, V., & Kere, J. (2007). Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. European Journal of Human Genetics, 15(4), 494-497. https://doi.org/10.1038/sj.ejhg.5201788
dc.sourceLi, Z., Ding, Y., Zhu, Y., Yin, M., Le, X., Wang, L., Yang, Y., & Zhang, Q. (2014). Both gene deletion and promoter hyper-methylation contribute to the down-regulation of ZAC/PLAGL1 gene in gastric adenocarcinomas: A case control study. Clinics and Research in Hepatology and Gastroenterology, 38(6), 744-750. https://doi.org/10.1016/j.clinre.2013.06.007
dc.sourceLi, P., Guo, M., Wang, C., Liu, X., & Zou, Q. (2015). An overview of SNP interactions in genome-wide association studies. Briefings in Functional Genomics, 14(2), 143-155. https://doi.org/10.1093/bfgp/elu036
dc.sourceLlorca, J., Prieto-Salceda, D., Combarros, O., Dierssen-Sotos, T., & Berciano, J. (2005). Riesgos competitivos de muerte y equilibrio de Hardy-Weinberg en estudios de casos y controles sobre asociación entre genes y enfermedades. Gaceta Sanitaria, 19(4), 321-324. https://doi.org/10.1157/13078032
dc.sourceMalik, A., Jee, B., & Gupta, S. K. (2019). Preeclampsia: Disease biology and burden, its management strategies with reference to India. Pregnancy Hypertension, 15, 23-31. https://doi.org/10.1016/j.preghy.2018.10.011
dc.sourceMarchini, J., Donnelly, P., & Cardon, L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature Genetics, 37(4), 413-417. https://doi.org/10.1038/ng1537
dc.sourceMaynard, S. E., Min, J.-Y., Merchan, J., Lim, K.-H., Li, J., Mondal, S., Libermann, T. A., Morgan, J. P., Sellke, F. W., Stillman, I. E., Epstein, F. H., Sukhatme, V. P., & Karumanchi, S. A. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. Journal of Clinical Investigation, 111(5), 649-658. https://doi.org/10.1172/JCI17189
dc.sourceMichita, R. T., Kaminski, V. de L., & Chies, J. A. B. (2018). Genetic Variants in Preeclampsia: Lessons From Studies in Latin-American Populations. Frontiers in Physiology, 9, 1771. https://doi.org/10.3389/fphys.2018.01771
dc.sourceMol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., de Groot, C. J. M., & Hofmeyr, G. J. (2016). Pre-eclampsia. The Lancet, 387(10022), 999-1011. https://doi.org/10.1016/S0140-6736(15)00070-7
dc.sourceMoses, E. K., Lade, J. A., Guo, G., Wilton, A. N., Grehan, M., Freed, K., Borg, A., Terwilliger, J. D., North, R., Cooper, D. W., & Brennecke, S. P. (2000). A Genome Scan in Families from Australia and New Zealand Confirms the Presence of a Maternal Susceptibility Locus for Pre-Eclampsia, on Chromosome 2. The American Journal of Human Genetics, 67(6), 1581-1585. https://doi.org/10.1086/316888
dc.sourceMuetze, S., Leeners, B., Ortlepp, J. R., Kuse, S., Tag, C. G., Weiskirchen, R., Gressner, A. M., Rudnik-Schoeneborn, S., Zerres, K., & Rath, W. (2008). Maternal factor V Leiden mutation is associated with HELLP syndrome in Caucasian women. Acta Obstetricia et Gynecologica Scandinavica, 87(6), 635-642. https://doi.org/10.1080/00016340802112740
dc.sourcePaauw, N. D., & Lely, A. T. (2018). Cardiovascular Sequels During and After Preeclampsia. En P. L. M. Kerkhof & V. M. Miller (Eds.), Sex-Specific Analysis of Cardiovascular Function (Vol. 1065, pp. 455-470). Springer International Publishing. https://doi.org/10.1007/978-3-319-77932-4_28
dc.sourceRani, A., Greenlaw, R., Smith, R. A., & Galustian, C. (2016). HES1 in immunity and cancer. Cytokine & Growth Factor Reviews, 30, 113-117. https://doi.org/10.1016/j.cytogfr.2016.03.010
dc.sourceReich, D. E., & Lander, E. S. (2001). On the allelic spectrum of human disease. Trends in Genetics, 17(9), 502-510. https://doi.org/10.1016/S0168-9525(01)02410-6
dc.sourceRigourd, V., Chauvet, C., Chelbi, S. T., Rebourcet, R., Mondon, F., Letourneur, F., Mignot, T.-M., Barbaux, S., & Vaiman, D. (2008). STOX1 Overexpression in Choriocarcinoma Cells Mimics Transcriptional Alterations Observed in Preeclamptic Placentas. PLoS ONE, 3(12), e3905. https://doi.org/10.1371/journal.pone.0003905
dc.sourceRigourd, V., Chelbi, S., Chauvet, C., Rebourcet, R., Barbaux, S., Bessières, B., Mondon, F., Mignot, T.-M., Danan, J.-L., & Vaiman, D. (2009). Re-evaluation of the role of STOX1 transcription factor in placental development and preeclampsia. Journal of Reproductive Immunology, 82(2), 174-181. https://doi.org/10.1016/j.jri.2009.05.001
dc.sourceSkjærven, R., Vatten, L. J., Wilcox, A. J., Rønning, T., Irgens, L. M., & Lie, R. T. (2005). Recurrence of pre-eclampsia across generations: Exploring fetal and maternal genetic components in a population based cohort. BMJ, 331(7521), 877. https://doi.org/10.1136/bmj.38555.462685.8F
dc.sourceStormo, G. D. (2000). DNA binding sites: Representation and discovery. Bioinformatics, 16(1), 16-23. https://doi.org/10.1093/bioinformatics/16.1.16
dc.sourceStormo, Gary D. (2013). Modeling the specificity of protein-DNA interactions. Quantitative Biology, 1(2), 115-130. https://doi.org/10.1007/s40484-013-0012-4
dc.sourcevan Dijk, M., Mulders, J., Poutsma, A., Könst, A. A. M., Lachmeijer, A. M. A., Dekker, G. A., Blankenstein, M. A., & Oudejans, C. B. M. (2005). Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nature Genetics, 37(5), 514-519. https://doi.org/10.1038/ng1541
dc.sourcevan Dijk, M., van Bezu, J., van Abel, D., Dunk, C., Blankenstein, M. A., Oudejans, C. B. M., & Lye, S. J. (2010). The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by α-T-catenin upregulation. Human Molecular Genetics, 19(13), 2658-2667. https://doi.org/10.1093/hmg/ddq152
dc.sourcevan Rijn, B. B., Franx, A., Steegers, E. A. P., de Groot, C. J. M., Bertina, R. M., Pasterkamp, G., Voorbij, H. A. M., Bruinse, H. W., & Roest, M. (2008). Maternal TLR4 and NOD2 Gene Variants, Pro-Inflammatory Phenotype and Susceptibility to Early-Onset Preeclampsia and HELLP Syndrome. PLoS ONE, 3(4), e1865. https://doi.org/10.1371/journal.pone.0001865
dc.sourceVenkatesha, S., Toporsian, M., Lam, C., Hanai, J., Mammoto, T., Kim, Y. M., Bdolah, Y., Lim, K.-H., Yuan, H.-T., Libermann, T. A., Stillman, I. E., Roberts, D., D’Amore, P. A., Epstein, F. H., Sellke, F. W., Romero, R., Sukhatme, V. P., Letarte, M., & Karumanchi, S. A. (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature Medicine, 12(6), 642-649. https://doi.org/10.1038/nm1429
dc.sourceXu, J., Turner, A., Little, J., Bleecker, E., & Meyers, D. (2002). Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: Hint for genotyping error? Human Genetics, 111(6), 573-574. https://doi.org/10.1007/s00439-002-0819-y
dc.sourceYong, H. E. J., Murthi, P., Brennecke, S. P., & Moses, E. K. (2018). Genetic Approaches in Preeclampsia. En P. Murthi & C. Vaillancourt (Eds.), Preeclampsia (Vol. 1710, pp. 53-72). Springer New York. https://doi.org/10.1007/978-1-4939-7498-6_5
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectSíndrome HELLP
dc.subjectSecuenciación Sanger
dc.subjectFactor Transcripción
dc.subjectPreeclampsia
dc.titleIdentificación de variantes genéticas de STOX1 en mujeres colombianas con preeclampsia severa y Síndrome Hellp
dc.typemasterThesis


Este ítem pertenece a la siguiente institución