dc.contributorMartínez Galarza, Juan Rafael
dc.contributorCaicedo Dorado, Alexander
dc.contributorMatemáticas Aplicadas y Computación - MACC
dc.creatorPérez Díaz, Víctor Samuel
dc.date.accessioned2022-03-01T15:56:26Z
dc.date.accessioned2022-09-22T15:07:50Z
dc.date.available2022-03-01T15:56:26Z
dc.date.available2022-09-22T15:07:50Z
dc.date.created2022-03-01T15:56:26Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/33793
dc.identifierhttps://doi.org/10.48713/10336_33793_
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3445305
dc.description.abstractContext. The Chandra Source Catalog (CSC), which collects the X-ray sources detected by the Chandra X-ray Observatory through its history, is a fertile ground for discovery, because many of the sources it contains have not been studied in detail. In CSC we could find several types of sources, from young stellar objects (YSO) and binary systems, to even very far quasars (QSO) or active galaxies with supermassive black holes in their cores. Among the potentially paradigm changing sources that we could look for in Chandra data are compact object mergers, extrasolar planet transits, tidal disruption events, etc. However, only a small fraction of the CSC sources have been classified. In order to conduct a thorough investigation of the CSC sources, and to be prepared for the coming very large X-ray surveys, we need to classify as many catalog sources as possible. Aims. This work proposes an unsupervised learning approach to classify as many Chandra Source Catalog sources as possible, first exploring the advantages and limits of using only the X-ray data available. Unsupervised learning is particularly suitable given the vast amount of detections that have not been independently classified yet. Clustering the source observations by their similarities, and then associating these clusters with objects previously classified spectroscopically, we aim to propose a new methodology that could provide us with a probabilistic classification for a numerous amount of sources. Methods. We employ unsupervised learning methods, first K-means, then focusing on Gaussian Mixtures, applied to a list of X-ray properties, to probabilistically classify high energy sources in the Chandra Source Catalog (CSC). We achieve this by associating specific clusters with those CSC objects that have a classification in the SIMBAD database, and then assigning probabilistic classes by association to unclassified objects in each cluster with an algorithm based on the Mahalanobis distance. Results. We are able to successfully identify clusters of previously identified objects that likely belong to the same class, and even within groups that were identified as having predominantly a type of source, such as "galaxies", "QSO", "YSO", we find sub-classes related to their unique variability and spectral properties. The result of this exercise is a robust probabilistic classification (i.e. a posterior over classes) for 10090 of CSC sources. The tables for each cluster and respective code is available at https://github.com/BogoCoder/astrox. Conclusions. We developed a methodology to provide probabilistic class assignation to numerous X-ray sources of the Chandra Source Catalog. Through this process we have seen that it is possible to construct a pipeline based on unsupervised machine learning for this task. We have seen that our approach works well for particular general type of sources, such as a YSO, or extra-galactic sources. In other cases, we have ambiguity in the number of classes presented in a particular cluster, having very different predominant types within them. This ambiguity might be solved by an addition of other wavelength regime data, such as optical from SDSS (Sloan Digital Survey Summary). This analysis is planned for a future work. This thesis present an early approach for the final goal of classifying all possible CSC sources that lacks of a class.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACC
dc.publisherEscuela de Ingeniería, Ciencia y Tecnología
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsRestringido (Temporalmente bloqueado)
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceMerloni, A; Predehl, P; Becker, W; Böhringer, H; Boller, T; Brunner, H; Brusa, M; Dennerl, K; Freyberg, M; Friedrich, P; Georgakakis, A; Haberl, F; Hasinger, G; Meidinger, N; Mohr, J; Nandra, K; Rau, A; Reiprich, T H; Robrade, J; Salvato, M; Santangelo, A; Sasaki, M; Schwope, A; Wilms, J; Consortium, The German Erosita (2012) eROSITA Science Book: Mapping the Structure of the Energetic Universe. En: arXiv [astro-ph.HE]. Disponible en: http://arxiv.org/abs/1209.3114.
dc.sourceVan Rossum, Guido; Drake, Fred L (2009) Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 9781441412690;
dc.sourceHarris, Charles R; Millman, K Jarrod; van der Walt, Stéfan J; Gommers, Ralf; Virtanen, Pauli; Cournapeau, David; Wieser, Eric; Taylor, Julian; Berg, Sebastian; Smith, Nathaniel J; Kern, Robert; Picus, Matti; Hoyer, Stephan; van Kerkwijk, Marten H; Brett, Matthew; Haldane, Allan; del Río, Jaime Fernández; Wiebe, Mark; Peterson, Pearu; Gérard-Marchant, Pierre; Sheppard, Kevin; Reddy, Tyler; Weckesser, Warren; Abbasi, Hameer; Gohlke, Christoph; Oliphant, Travis E (2020) Array programming with NumPy. En: Nature. Vol. 585; No. 7825; pp. 357-362 : Springer Science and Business Media LLC; Disponible en: https://doi.org/10.1038/s41586-020-2649-2; http://dx.doi.org/10.1038/s41586-020-2649-2. Disponible en: 10.1038/s41586-020-2649-2.
dc.sourceHunter, J D (2007) Matplotlib: A 2D graphics environment. En: Computing in Science & Engineering. Vol. 9; No. 3; pp. 90-95 : IEEE COMPUTER SOC; Disponible en: http://dx.doi.org/10.1109/MCSE.2007.55. Disponible en: 10.1109/MCSE.2007.55.
dc.sourcePandas development team, The (2020) pandas-dev/pandas: Pandas. : Zenodo; Disponible en: https://doi.org/10.5281/zenodo.3509134; http://dx.doi.org/10.5281/zenodo.3509134. Disponible en: 10.5281/zenodo.3509134.
dc.sourceWaskom, Michael L (2021) seaborn: statistical data visualization. En: Journal of Open Source Software. Vol. 6; No. 60; pp. 3021 : The Open Journal; Disponible en: https://doi.org/10.21105/joss.03021; http://dx.doi.org/10.21105/joss.03021. Disponible en: 10.21105/joss.03021.
dc.source(2013) Astropy: A community Python package for astronomy. En: Astronomy & Astrophysics. Vol. 558; pp. A33 Disponible en: http://dx.doi.org/10.1051/0004-6361/201322068; http://arxiv.org/abs/1307.6212. Disponible en: 10.1051/0004-6361/201322068.
dc.source(2018) The Astropy Project: Building an Open-science Project and Status of the. En: The Astronomical Journal. Vol. 156; No. 3; pp. 123 Disponible en: http://dx.doi.org/10.3847/1538-3881/aabc4f; http://arxiv.org/abs/1801.02634. Disponible en: 10.3847/1538-3881/aabc4f.
dc.sourcePedregosa, F; Varoquaux, G; Gramfort, A; Michel, V; Thirion, B; Grisel, O; Blondel, M; Prettenhofer, P; Weiss, R; Dubourg, V; Vanderplas, J; Passos, A; Cournapeau, D; Brucher, M; Perrot, M; Duchesnay, E (2011) Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research. Vol. 12; pp. 2825-2830
dc.sourceWilkes, Belinda; Tucker, Wallace (2019) The Chandra X-ray Observatory. En: 2514-3433.: IOP Publishing; 9780750321631; Disponible en: http://dx.doi.org/10.1088/2514-3433/ab43dc. Disponible en: 10.1088/2514-3433/ab43dc.
dc.sourceEvans, Ian N; Primini, Francis A; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Davis, John E; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; He, Xiangqun (helen); Houck, John C; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Nowak, Michael A; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula (2010) THE CHANDRA SOURCE CATALOG. En: The Astrophysical Journal Supplement Series. Vol. 189; No. 1; pp. 37-82 : American Astronomical Society; Disponible en: https://doi.org/10.1088/0067-0049/189/1/37; http://dx.doi.org/10.1088/0067-0049/189/1/37. Disponible en: 10.1088/0067-0049/189/1/37.
dc.source(2019) First M87 Event Horizon Telescope Results. I. The Shadow of the. En: The Astrophysical Journal Letters. Vol. 875; No. 1; pp. L1 Disponible en: http://dx.doi.org/10.3847/2041-8213/ab0ec7; http://arxiv.org/abs/1906.11238. Disponible en: 10.3847/2041-8213/ab0ec7.
dc.sourcePerlman, Eric S; Wilson, Andrew S (2005) The X-Ray Emissions from the M87 Jet: Diagnostics and Physical. En: The Astrophysical Journal. Vol. 627; No. 1; pp. 140-155 Disponible en: http://dx.doi.org/10.1086/430340; http://arxiv.org/abs/astro-ph/0503024. Disponible en: 10.1086/430340.
dc.sourceBishop, Christopher M (2006) Pattern Recognition and Machine Learning (Information Science and. Berlin, Heidelberg: Springer-Verlag; 9780387310732;
dc.sourceAlpaydin, Ethem (2014) Introduction to Machine Learning. En: Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press; 9780262028189;
dc.sourceDempster, A P; Laird, N M; Rubin, D B (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. En: Journal of the Royal Statistical Society. Series B (Methodological). Vol. 39; No. 1; pp. 1-38 : [Royal Statistical Society, Wiley]; 0035-9246; Disponible en: http://www.jstor.org/stable/2984875.
dc.sourceNeal, Radford M; Hinton, Geoffrey E; Jordan, Michael I (1998) A View of the Em Algorithm that Justifies Incremental, Sparse, and other. En: Learning in Graphical Models. pp. 355-368 Dordrecht: Springer Netherlands; 9789401150149; Disponible en: https://doi.org/10.1007/978-94-011-5014-9_12; http://dx.doi.org/10.1007/978-94-011-5014-9_12. Disponible en: 10.1007/978-94-011-5014-9_12.
dc.sourceDeisenroth, Marc Peter; Faisal, A Aldo; Ong, Cheng Soon (2020) Mathematics for Machine Learning. : Cambridge University Press;
dc.sourceMahalanobis, Prasanta Chandra (1936) On the generalized distance in statistics. En: Proceedings of the National Institute of Sciences (Calcutta). Vol. 2; pp. 49-55
dc.sourceWenger, M; Ochsenbein, F; Egret, D; Dubois, P; Bonnarel, F; Borde, S; Genova, F; Jasniewicz, G; Laloë, S; Lesteven, S; Monier, R (2000) The SIMBAD astronomical database. The CDS reference database for. En: AAPS. Vol. 143; pp. 9-22 Disponible en: http://dx.doi.org/10.1051/aas:2000332; http://arxiv.org/abs/astro-ph/0002110. Disponible en: 10.1051/aas:2000332.
dc.sourceTaylor, M B; Shopbell, P; Britton, M; Ebert, R (2005) TOPCAT & STIL: Starlink Table/VOTable Processing Software. En: Astronomical Data Analysis Software and Systems XIV. Vol. 347; pp. 29
dc.sourceMcLachlan, Geoffrey J (2005) Discriminant analysis and statistical pattern recognition. Vol. 583; John Wiley & Sons;
dc.sourceMuench, August; Getman, Konstantin; Hillenbrand, Lynne; Preibisch, Thomas (2009) Star Formation in the Orion Nebula I: Stellar Content.
dc.sourceLópez-Morales, Mercedes; Morrell, Nidia I; Butler, R Paul; Seager, Sara (2006) Limits to Transits of the Neptune-Mass Planet Orbiting GJ 5811. Vol. 118; No. 849; pp. 1506-1509 : IOP Publishing; Disponible en: https://doi.org/10.1086/508904; http://dx.doi.org/10.1086/508904. Disponible en: 10.1086/508904.
dc.sourceRani, B; Madejski, G M; Mushotzky, R F; Reynolds, C; Hodgson, J A (2018) NuStar View of the Central Region of the Perseus Cluster. Vol. 866; No. 1; pp. L13 : American Astronomical Society; Disponible en: https://doi.org/10.3847/2041-8213/aae48f; http://dx.doi.org/10.3847/2041-8213/aae48f. Disponible en: 10.3847/2041-8213/aae48f.
dc.sourceVéron-Cetty, M.-P.; Véron, P. (2006) A catalogue of quasars and active nuclei: 12th edition. En: A&A. Vol. 455; No. 2; pp. 773-777 Disponible en: https://doi.org/10.1051/0004-6361:20065177; http://dx.doi.org/10.1051/0004-6361:20065177. Disponible en: 10.1051/0004-6361:20065177.
dc.sourceMatt, G.; Bianchi, S.; Guainazzi, M.; Barcons, X.; Panessa, F. (2012) The Suzaku X-ray spectrum of NGC 3147. En: A&A. Vol. 540; pp. A111 Disponible en: https://doi.org/10.1051/0004-6361/201118729; http://dx.doi.org/10.1051/0004-6361/201118729. Disponible en: 10.1051/0004-6361/201118729.
dc.sourcePotekhin, A Y; Zyuzin, D A; Yakovlev, D G; Beznogov, M V; Shibanov, Yu A (2020) Thermal luminosities of cooling neutron stars. En: Monthly Notices of the Royal Astronomical Society. Vol. 496; No. 4; pp. 5052-5071 0035-8711; Disponible en: https://doi.org/10.1093/mnras/staa1871; http://dx.doi.org/10.1093/mnras/staa1871. Disponible en: 10.1093/mnras/staa1871.
dc.sourceHsiang, Jr-Yue; Chang, Hsiang-Kuang (2021) The power-law component of the X-ray emissions from pulsar-wind nebulae. En: Monthly Notices of the Royal Astronomical Society. Vol. 502; No. 1; pp. 390-397 0035-8711; Disponible en: https://doi.org/10.1093/mnras/stab025; http://dx.doi.org/10.1093/mnras/stab025. Disponible en: 10.1093/mnras/stab025.
dc.sourceLin, Dacheng; Webb, Natalie A; Barret, Didier (2012) CLASSIFICATION OF X-RAY SOURCES IN THEXMM-NEWTONSERENDIPITOUS SOURCE. Vol. 756; No. 1; pp. 27 : American Astronomical Society; Disponible en: https://doi.org/10.1088/0004-637x/756/1/27; http://dx.doi.org/10.1088/0004-637x/756/1/27. Disponible en: 10.1088/0004-637x/756/1/27.
dc.sourcePineau, F-X; Derriere, S; Michel, L; Motch, C (2010) Comparison of classification methods for XMM sources. En: Astronomical Data Analysis Software and Systems XIX. Vol. 434; pp. 369
dc.sourceLo, Kitty K; Farrell, Sean; Murphy, Tara; Gaensler, B M (2014) Automatic classification of time-variable X-ray sources. En: The Astrophysical Journal. Vol. 786; No. 1; pp. 20 : IOP Publishing;
dc.sourceFarrell, Sean A; Murphy, Tara; Lo, Kitty K (2015) Autoclassification of the variable 3xmm sources using the random forest. En: The Astrophysical Journal. Vol. 813; No. 1; pp. 28 : IOP Publishing;
dc.sourceRostami Osanloo, Mehrdad; Rangelov, Blagoy; Kargaltsev, Oleg; Hare, Jeremy (2019) Classification of Extragalactic X-Ray Sources Using Machin Learning. En: AAS. Vol. 233; pp. 457-403
dc.sourceAnsari, Zoe; Agnello, Adriano; Gall, Christa (2021) Mixture models for photometric redshifts. En: A&A. Vol. 650; pp. A90 Disponible en: https://doi.org/10.1051/0004-6361/202039675; http://dx.doi.org/10.1051/0004-6361/202039675. Disponible en: 10.1051/0004-6361/202039675.
dc.sourceLogan, C. H. A.; Fotopoulou, S. (2020) Unsupervised star, galaxy, QSO classification. En: A&A. Vol. 633; pp. A154 Disponible en: https://doi.org/10.1051/0004-6361/201936648; http://dx.doi.org/10.1051/0004-6361/201936648. Disponible en: 10.1051/0004-6361/201936648.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectClustering
dc.subjectGMM
dc.subjectK-means
dc.subjectChandra Source Catalog
dc.subjectChandra X-ray Observatory
dc.subjectClasificación
dc.subjectAgrupación
dc.subjectAprendizaje automático no supervisado
dc.subjectAstrofísica de alta energía
dc.subjectRayos X
dc.titleUnsupervised machine learning for the classification of astrophysical X-ray sources
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución