dc.creatorLópez, Oscar
dc.creatorSerrano, Rafael
dc.date.accessioned2020-05-26T00:01:15Z
dc.date.accessioned2022-09-22T14:53:38Z
dc.date.available2020-05-26T00:01:15Z
dc.date.available2022-09-22T14:53:38Z
dc.date.created2020-05-26T00:01:15Z
dc.identifier15326349
dc.identifier15324214
dc.identifierhttps://repository.urosario.edu.co/handle/10336/23338
dc.identifierhttps://doi.org/10.1080/15326349.2014.999286
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3443107
dc.description.abstractWe study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump asset price model with Markov-modulated (regime switching) jump-size distributions. We give sufficient conditions for existence of optimal policies and find closed-form expressions for the optimal value function for agents with logarithmic and fractional power (CRRA) utility in the case of two-state Markov chains. The main tools are convex duality techniques, stochastic calculus for pure-jump processes, and explicit formulae for the moments of telegraph processes with Markov-modulated random jumps. Copyright © Taylor and Francis Group, LLC.
dc.languageeng
dc.publisherTaylor and Francis Inc.
dc.relationStochastic Models, ISSN:15326349, 15324214, Vol.31, No.2 (2015); pp. 261-291
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84929156576&doi=10.1080%2f15326349.2014.999286&partnerID=40&md5=f75afde8555eb1a64aee0ca6e92a52a4
dc.relation291
dc.relationNo. 2
dc.relation261
dc.relationStochastic Models
dc.relationVol. 31
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.titleMartingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models
dc.typearticle


Este ítem pertenece a la siguiente institución