dc.contributorMuñoz, Marina
dc.contributorRamírez, Juan David
dc.contributorGrupo de Investigaciones Microbiológicas UR (GIMUR)
dc.creatorUrrea Messa, Vanessa del Pilar
dc.date.accessioned2022-06-03T07:41:48Z
dc.date.accessioned2022-09-22T14:50:13Z
dc.date.available2022-06-03T07:41:48Z
dc.date.available2022-09-22T14:50:13Z
dc.date.created2022-06-03T07:41:48Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/34291
dc.identifierhttps://doi.org/10.48713/10336_34291_
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3442572
dc.description.abstractAnthropogenic activity has generated a negative impact on aquatic environments and on the organisms that live in them. Therefore, the water quality of the samples taken in the four tributaries of the Bogotá River will be determined by implementing traditional strategies with physicochemical and microbiological analyses. Likewise, the composition of the microbial communities present were described using metagenomic analysis and with these results the presence of molecular markers of interest. Our results showed how the bacterial community dominates in the samples, in addition, the description of the antibiotic resistance markers and virulence factors gives an approximation to how the water is serving as a medium for its propagation. Finally, this study allows generating relevant information on the current status of the sampled points and marking a starting point to continue with future research.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.sourceAdeyemi, F. M., Wahab, A. A., Oyelami, C. A., Oyedara, O. O., Titilawo, M. A., Adebunmi, A. A., & Awoniyi, I. O. (2022). Hydrology survey and water quality assessment of water sources in three selected towns in Osun State, Southwest Nigeria. International Journal of Energy and Water Resources, 1-14.
dc.sourceAjenifuja, O. A., & Oni, O. (2022). Susceptibility pattern of enteric bacteria isolated during rainy season in some areas of Ado-Ekiti to macrolide antibiotics. Microbes and Infectious Diseases, 3(1), 149-159.
dc.sourceAlatraktchi, F. A. A. (2022). Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: towards on-site applications. Measurement, 111124.
dc.sourceAlcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., ... & McArthur, A. G. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48(D1), D517-D525.
dc.sourceAlqahtani, A., Shah, M. I., Aldrees, A., & Javed, M. F. (2022). Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality. Sustainability, 14(3), 1183
dc.sourceAnjur, N., Sabran, S. F., Daud, H. M., & Othman, N. Z. (2021). An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Veterinary World, 14(5), 1143.
dc.sourceAzam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug discovery today, 24(1), 350-359.
dc.sourceBeghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., ... & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife, 10, e65088.
dc.sourceBowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., ... & Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature biotechnology, 35(8), 725-731.
dc.sourceBreitwieser, F. P., & Salzberg, S. L. (2020). Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303-1304.
dc.sourceChaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
dc.sourceChen, X., He, Z., Zhao, J., Liao, M., Xue, Y., Zhou, J., ... & Sun, C. (2022). Metagenomic Analysis of Bacterial Communities and Antibiotic Resistance Genes in Penaeus monodon Biofloc-Based Aquaculture Environments. Frontiers in Marine Science.
dc.sourceChen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic acids research, 44(D1), D694-D697.
dc.sourceDai, J., Meng, X., Zhang, Y., & Huang, Y. (2020). Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresource Technology, 311, 123455.
dc.sourceDíaz-Martínez, J. A., & Granada-Torres, C. A. (2018). Effect of anthropic activities on the physicochemical and microbiological characteristics of the Bogotá River along the municipality of Villapinzón-Cundinamarca. Revista de la Facultad de Medicina, 66(1), 45-52.
dc.sourceFernández, M. F. C., Casallas, D. M. D., & Marín, C. E. M. (2015). Análisis de la Calidad del Agua del Río Bogotá Dura nte el Periodo 2008–2015 a Par tir de Herra mientas de Minería de Datos. Publicaciones e Investigación, 9, 37-50.
dc.sourceFierro Ortiz, E., & Caballero Rodríguez, L. E. (2015). evaluación de la calidad del agua del humedal de santa maría del lago mediante el uso de índices biológicos y fisicoquímicos para su implementación en otros humedales.
dc.sourceFinneran, K. T., Johnsen, C. V., & Lovley, D. R. (2003). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III). International Journal of Systematic and Evolutionary Microbiology, 53(3), 669-673.
dc.sourceGorde, S. P., & Jadhav, M. V. (2013). Assessment of water quality parameters: a review. J Eng Res Appl, 3(6), 2029-2035.
dc.sourceGualdrón Durán, L. E. (2016). Evaluación de la calidad de agua de ríos de Colombia usando parámetros fisicoquímicos y biológicos.
dc.sourceGrigoryan, A. A., Bondici, V. F., Kryachko, Y., Khan, N. H., Lawrence, J. R., Wolfaardt, G. M., ... & Korber, D. R. (2022). Draft Genome Sequence of Polaromonas eurypsychrophila AER18D-145, Isolated from a Uranium Tailings Management Facility in Northern Saskatchewan, Canada. Microbiology Resource Announcements, e00013-22.
dc.sourceGronewold, A. D., & Wolpert, R. L. (2008). Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. Water research, 42(13), 3327-3334
dc.sourceHan, X., Wang, F., Zhang, D., Feng, T., & Zhang, L. (2021). Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. Environmental Pollution, 268, 115693.
dc.sourceHenao‐Herreño, L. X., López‐Tamayo, A. M., Ramos‐Bonilla, J. P., Haas, C. N., & Husserl, J. (2017). Risk of illness with Salmonella due to consumption of raw unwashed
dc.sourceHernández-De Lira, I., David Huber, M. P. L. E., Terán, J. S. M., & Balagurusamy, N. (2014). Metagenómica: concepto y aplicaciones en el mundo microbiano. FRONTERAS EN MICROBIOLOGIA APLICADA, 154.
dc.sourceHo, J. Y., Jong, M. C., Acharya, K., Liew, S. S. X., Smith, D. R., Noor, Z. Z., ... & Eswaran, J. (2021). Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management. Journal of hazardous materials, 405, 124687.
dc.sourceHoslett, J., Ghazal, H., Katsou, E., & Jouhara, H. (2021). The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment, 751, 141755.
dc.sourceHuang, L., Ye, J., Xiang, H., Jiang, J., Wang, Y., & Li, Y. (2020). Enhanced nitrogen removal from low C/N wastewater using biodegradable and inert carriers: Performance and microbial shift. Bioresource Technology, 300, 122658.
dc.sourceIllumina. (2015). Shotgun Metagenomic Sequencing.
dc.sourceJanelidze, N., Jaiani, E., Didebulidze, E., Kusradze, I., Kotorashvili, A., Chalidze, K., ... & Tediashvili, M. (2022). Phenotypic and Genetic Characterization of Aeromonas hydrophila Phage AhMtk13a and Evaluation of Its Therapeutic Potential on Simulated Aeromonas Infection in Danio rerio. Viruses, 14(2), 412.
dc.sourceJia., Guan, Y., Li, X., Fan, X., Zhu, Z., Xing, H., & Wang, Z. (2021). Phenotype profiles and adaptive preference of Acinetobacter johnsonii isolated from Ba River with different environmental backgrounds. Environmental research, 196, 110913
dc.sourceJia, J., Liu, M., Feng, L., & Wang, Z. (2022). Comparative genomic analysis reveals the evolution and environmental adaptation of Acinetobacter johnsonii. Gene, 808, 145985.
dc.sourceJoseph, S. M., Battaglia, T., Maritz, J. M., Carlton, J. M., & Blaser, M. J. (2019). Longitudinal comparison of bacterial diversity and antibiotic resistance genes in New York City sewage. MSystems, 4(4), e00327-19.
dc.sourceKaiser, R. A., Taing, L., & Bhatia, H. (2022). Antimicrobial Resistance and Environmental Health: A Water Stewardship Framework for Global and National Action. Antibiotics, 11(1), 63.
dc.sourceKim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12), 1721-1729.
dc.sourceKotsiri, Z., Vidic, J., & Vantarakis, A. (2022). Applications of biosensors for bacteria and virus detection in food and water–A systematic review. journal of environmental sciences, 111, 367-379.
dc.sourceKhadraoui, N., Essid, R., Jallouli, S., Damergi, B., Ben Takfa, I., Abid, G., ... & Tabbene, O. (2022). Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa pathogenic isolates and molecular mechanism of action. Archives of Microbiology, 204(2), 1-12
dc.sourceLee, J., Beck, K., & Bürgmann, H. (2022). Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Water Research, 208, 117827.
dc.sourceLeonov, V., Leonova, L., Cherepanov, D., Savin, L., Tkalich, A., Petrovskaya, Y., ... & Ananina, I. (2022). The Growth Kinetics of Pathogenic Microorganisms Under Conditions Modelling the Vital Functions of Iron-Oxidizing Bacteria. BioNanoScience, 1-5.
dc.sourceLi, Y., Li, Q., Jiao, S., Liu, C., Yang, L., Huang, G., ... & Brancelj, A. (2022). Water Quality Characteristics and Source Analysis of Pollutants in the Maotiao River Basin (SW China). Water, 14(3), 301.
dc.sourceLiu, S., Wang, P., Wang, C., Wang, X., & Chen, J. (2021). Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Research, 202, 117447.
dc.sourceMao, G., Liang, J., Wang, Q., Zhao, C., Bai, Y., Liu, R., ... & Qu, J. (2021). Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. Journal of Environmental Sciences, 101, 27-35.
dc.sourceMeneses-Campo, Y., Castro-Rebolledo, M. I., & Jaramillo-Londoño, Á. M. (2019). Comparison of Water Quality Between Two Andean Rivers by Using the BMWP/COL. and ABI. Indices. Acta Biológica Colombiana, 24(2), 299-310.
dc.sourceMoshi, H. A., Shilla, D. A., Kimirei, I. A., O’Reilly, C., Clymans, W., Bishop, I., & Loiselle, S. A. (2022). Community monitoring of coliform pollution in Lake Tanganyika. Plos one, 17(1), e0262881.
dc.sourceMoreno-Mesonero, L., Ferrús, M. A., & Moreno, Y. (2020). Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. Environmental Research, 190, 109987.
dc.sourceMüller, E., Hotzel, H., Ahlers, C., Hänel, I., Tomaso, H., & Abdel-Glil, M. Y. (2020). Genomic analysis and antimicrobial resistance of Aliarcobacter cryaerophilus strains from German water poultry. Frontiers in Microbiology, 1549
dc.sourceNeamat-Allah, A. N., Mahmoud, E. A., & Mahsoub, Y. (2021). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, 108, 147-156.
dc.sourceNgobeni, R., Gilchrist, C., & Samie, A. (2022). Prevalence and Distribution of Cryptosporidium spp. and Giardia lamblia in Rural and Urban Communities of South Africa. Turkiye Parazitolojii Dergisi, 46(1), 14-19.
dc.sourceParida, P. K., Behera, B. K., Dehury, B., Rout, A. K., Sarkar, D. J., Rai, A., ... & Mohapatra, T. (2022). Impact of Anthropogenic Activity on Community Structure and Function of Microbiomes in Polluted Stretches of River Yamuna at New Delhi, India: Insights From Shotgun Metagenomics.
dc.sourcePosada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A. M., Hernández, F., ... & Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific reports, 9(1), 1-13.
dc.sourceOmer, N. H. (2019). Water quality parameters. Water quality-science, assessments and policy, 18.
dc.sourceRiesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.
dc.sourceRodríguez Forero, A., González Mantilla, J.F. & Suárez Martínez, R. (2009) Accumulation of Lead, Chromium, and Cadmium in Muscle of capitán (Eremophilus mutisii), a Catfish from the Bogota River Basin. Arch Environ Contam Toxicol 57, 359–365 https://doi.org/10.1007/s00244-008-9279-2
dc.sourceRoman, V. L., Merlin, C., Baron, S., Larvor, E., Le Devendec, L., Virta, M. P., & Bellanger, X. (2021). Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities. Environmental Pollution, 288, 117673.
dc.sourceRuiz-Moreno, H. A., López-Tamayo, A. M., Caro-Quintero, A., Husserl, J., & Barrios, A. F. G. (2019). Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecological Modelling, 399, 1-12.
dc.sourceSalinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics, 10(1), 1-23.
dc.sourceSazykin, I. S., Seliverstova, E. Y., Khmelevtsova, L. E., Azhogina, T. N., Kudeevskaya, E. M., Khammami, M. I., ... & Sazykina, M. A. (2019). Occurrence of antibiotic resistance genes in sewages of Rostov-on-Don and lower Don River. Теоретическая и прикладная экология, (4), 76-82.
dc.sourceSecretaría Distrital de Planeación de Bogotá. (2014). Aproximación a las implicaciones del fallo del consejo de estado sobre el Río Bogotá. Recuperado de: http://www.sdp.gov.co/sites/default/files/aproximacion_a_las_implicaciones_del_fallo_del_consejo_de_estado_sobre_el_rio_bogota.pdf
dc.sourceSun, J., Jin, L., He, T., Wei, Z., Liu, X., Zhu, L., & Li, X. (2020). Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Science of The Total Environment, 740, 140001.
dc.sourceStaley, C., & Sadowsky, M. J. (2016). Application of metagenomics to assess microbial communities in water and other environmental matrices. Journal of the Marine Biological Association of the United Kingdom, 96(1), 121-129.
dc.sourceShehu, D., & Alias, Z. (2018). Dechlorination of polychlorobiphenyl (PCB) degradation metabolites by a recombinant glutathione transferase from Acidovorax sp. KKS102. FEBS Open Bio.
dc.sourceThulasinathan, B., Jayabalan, T., Arumugam, N., Kulanthaisamy, M. R., Kim, W., Kumar, P., ... & Alagarsamy, A. (2022). Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview. Fuel, 317, 123369.
dc.sourcevan Bel, N., van der Wielen, P., Wullings, B., van Rijn, J., van der Mark, E., Ketelaars, H., & Hijnen, W. (2020). Aeromonas Species from Nonchlorinated Distribution Systems and Their Competitive Planktonic Growth in Drinking Water. Applied and Environmental Microbiology, 87(5), e02867-20.
dc.sourceVasconcellos, F. D. S., Iganci, J. R. V., & Ribeiro, G. A. (2022). Qualidade microbiológica da água do rio São Lourenço, São Lourenço do Sul, Rio Grande do Sul. Arquivos do Instituto Biológico, 73, 177-181.
dc.sourceVaillancourt, M., Limsuwannarot, S. P., Bresee, C., Poopalarajah, R., & Jorth, P. (2021). Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics, 10(10), 1164.
dc.sourceVega, L., Jaimes, J., Morales, D., Martínez, D., Cruz-Saavedra, L., Muñoz, M., & Ramírez, J. D. (2021). Microbial Communities’ Characterization in Urban Recreational Surface Waters Using Next Generation Sequencing. Microbial Ecology, 1-17.
dc.sourceWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome biology, 20(1), 1-13.
dc.sourceWang, Q., Xu, Y., Liu, L., Li, L. Y., Lin, H., Wu, X. Y., ... & Luo, Y. (2021). The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. Environmental Pollution, 268, 115362.
dc.sourceXu, H., Gao, Q., & Yuan, B. (2022). Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecological Indicators, 135, 108561
dc.sourceYang, X., Yan, L., Yang, Y., Zhou, H., Cao, Y., Wang, S., ... & Qiu, Z. (2022). The Occurrence and Distribution Pattern of Antibiotic Resistance Genes and Bacterial Community in the Ili River. Frontiers in Environmental Science, 212.
dc.sourceYuan, Q., Sui, M., Qin, C., Zhang, H., Sun, Y., Luo, S., & Zhao, J. (2022). Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. Environmental Science and Pollution Research, 1-18.
dc.sourceZhang, C., Zhao, Z., Dong, S., & Zhou, D. (2021). Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: contributions of easy-to-biodegrade food. Science of the Total Environment, 764, 142907.
dc.sourceZhao, H., Guan, X., Zhang, F., Huang, Y., Xia, D., Hu, L., ... & He, C. (2022). Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water. Journal of Materials Science & Technology, 100, 110-119.
dc.sourceZhang, L., Ma, L., Yang, Q., Liu, Y., Ai, X., & Dong, J. (2022). Sanguinarine Protects Channel Catfish against Aeromonas hydrophila Infection by Inhibiting Aerolysin and Biofilm Formation. Pathogens, 11(3), 323.
dc.sourceZhao, X. L., Qi, Z., Huang, H., Tu, J., Song, X. J., Qi, K. Z., & Shao, Y. (2022). Coexistence of antibiotic resistance genes, fecal bacteria, and potential pathogens in anthropogenically impacted water. Environmental Science and Pollution Research, 1-14.
dc.sourceZhang, S., Amanze, C., Sun, C., Zou, K., Fu, S., Deng, Y., ... & Liang, Y. (2021). Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon, 7(6), e07181
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectCalidad agua
dc.subjectMetagenómica
dc.subjectMarcadores moleculares
dc.subjectContaminación
dc.subjectActividad antropogénica
dc.subjectAmbientes acuáticos
dc.subjectRío Bogotá
dc.subjectPruebas fisicoquímicas
dc.subjectPruebas microbiológicas
dc.titleDescripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución