dc.contributorSalazar, Camilo
dc.contributorRueda, Nicol
dc.contributorGenética Evolutiva, Filogeografía y Ecología de Biodiversidad Neotropical
dc.creatorSánchez Melo, Catalina Sofía
dc.date.accessioned2021-10-01T21:16:34Z
dc.date.accessioned2022-09-22T14:49:57Z
dc.date.available2021-10-01T21:16:34Z
dc.date.available2022-09-22T14:49:57Z
dc.date.created2021-10-01T21:16:34Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/32646
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3442527
dc.description.abstractThe adaptive diversification of plants and their herbivorous insects could be influenced by coevolutionary processes. The biotic relationship between Heliconius butterflies and their host plants Passiflora has been studied from its morphological, physiological, and behavioural aspects. However, whether the degree of geographic correlation between their distributions and richness is informative regarding their coevolution has not been documented. To do this, I modelled the richness and distribution of 165 Passiflora and 34 Heliconius species in Colombia using four different algorithms. In both analyses, the environmental variable that best explains the observed patterns was identified. I compared the distribution pattern between a monophagous species H.eleuchia and its host plants and the oligophagous H.cydno with its 28 host plants. I found that the degree of overlap of Passiflora and Heliconius is low, and its richness is explained by different environmental variables –isothermality on the former and seasonality of precipitation on the latter–. Nevertheless, the most important variable for the distribution of both groups is the annual temperature range. The distribution of H.eleuchia has a higher correlation with its host plants than the distribution of H.cydno, which is consistent with the monophagy and oligophagy of its larvae, respectively. Other ecological factors such as toxicity deserve more attention as potential drivers of coevolution. On a geographical scale, it can be concluded that the pattern of diversification of both genera is likely to be different. Furthermore, since they do not share species richness hotspots, my results are not compatible with a strict coevolution scenario.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsRestringido (Temporalmente bloqueado)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.sourceAcevedo, D., & Currie, D. (2003). Does Climate Determine Broad-Scale Patterns of Species Richness? A Test of the Causal Link by Natural Experiment on JSTOR. Global Ecology and Biogeography, 12(6). https://www.jstor.org/stable/3697428
dc.sourceAgrawal, A. A., & Zhang, X. (2021). The evolution of coevolution in the study of species interactions. Evolution, 75(7), 1594–1606. https://doi.org/10.1111/EVO.14293
dc.sourceAguirre-Morales, A. C., Bonilla-Morales, M. M., & Caetano, C. M. (2016). Evaluación de la diversidad y patrones de distribución de Passiflora subgénero Astrophea (Passifloraceae) en Colombia. Un reto para la investigación taxonómica, florística y de conservación de las especies. Acta Agronomica, 65(4). https://doi.org/10.15446/acag.v65n4.51444
dc.sourceAllouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
dc.sourceApple, J. L., & Feener, D. H. (2001). Ant visitation of extrafloral nectaries of Passiflora: The effects of nectary attributes and ant behavior on patterns in facultative ant-plant mutualisms. Oecologia, 127(3), 409–416. https://doi.org/10.1007/S004420000605
dc.sourceAssis, J. (2020). R Pipelines to reduce the spatial autocorrelation in Species Distribution Models. Https://Github.Com/Jorgeassis/SpatialAutocorrelation.
dc.sourceBasheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/S0167-7012(00)00201-3
dc.sourceBates, H. W. (1862). Contributions to an insect fauna of the Amazon valley (Lepidoptera : Heliconidae). Transactions Ofthe Linnean Society of London, 23, 495–496.
dc.sourceBeccaloni, George. (2008). Catalogue of the hostplants of the neotropical butterflies. Monografías 3ercer Milenio, 8(January), 536.
dc.sourceBenson, W. W., Brown, K. S., & Gilbert, L. E. (1975). Coevolution of Plants and Herbivores: Passion Flower Butterflies. Evolution, 29(4), 659. https://doi.org/10.2307/2407076
dc.sourceBerg, C. C., & Wiebes, J. T. (1992). African fig trees and fig wasps. North-Holland.
dc.sourceBernays, E. A., & Chapman, R. F. (1994). Host-plant selection by phytophagous insects.
dc.sourceBonilla, M. M. (2014). Biogeografía y morfología de las Passifloraceae (Subg. Tacsonia, Rathea y Manicata). Universidad Nacional de Colombia, 101.
dc.sourceBrown, K. S. Jr. (1981). The Biology of Heliconius and Related Genera. Annu. Rev. Entomol., 26. www.annualreviews.org/aronline
dc.sourceCuesta, F., Muriel, P., Llambí, L. D., Halloy, S., Aguirre, N., Beck, S., Carilla, J., Meneses, R. I., Cuello, S., Grau, A., Gámez, L. E., Irazábal, J., Jácome, J., Jaramillo, R., Ramírez, L., Samaniego, N., Suárez-Duque, D., Thompson, N., Tupayachi, A., ... Gosling, W. D. (2017). Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography, 40(12), 1381–1394. https://doi.org/10.1111/ECOG.02567
dc.sourceDarragh, K., Byers, K. J. R. P., Merrill, R. M., McMillan, W. O., Schulz, S., & Jiggins, C. D. (2019). Male pheromone composition depends on larval but not adult diet in Heliconius melpomene. Ecological Entomology, 44(3), 397–405. https://doi.org/10.1111/EEN.12716
dc.sourceDaru, B. H., Karunarathne, P., & Schliep, K. (2020). phyloregion: R package for biogeographical regionalization and macroecology. Methods in Ecology and Evolution, 11(11), 1483–1491. https://doi.org/10.1111/2041-210X.13478
dc.sourceDavies, T. J., & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2414–2425. https://doi.org/10.1098/RSTB.2011.0058
dc.sourcede Castro, É. C. P., Zagrobelny, M., Cardoso, M. Z., & Bak, S. (2017). The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject. Biological Reviews, 93(1), 555–573. https://doi.org/10.1111/BRV.12357
dc.sourceDell’Aglio, D. D., Losada, M. E., & Jiggins, C. D. (2016). Butterfly learning and the diversification of plant leaf shape. Frontiers in Ecology and Evolution, 4(JUL). https://doi.org/10.3389/FEVO.2016.00081
dc.sourceDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600- 0587.2012.07348.x
dc.sourceEhrlich, P. R., & Raven, P. H. (1964). Butterflies and Plants: A Study in Coevolution. Evolution, 18(4), 586. https://doi.org/10.2307/2406212
dc.sourceEndress, P. K. (1996). Diversity and evolutionary biology of tropical flowers. 511.
dc.sourceFenker, J., Tedeschi, L. G., Pyron, R. A., & Nogueira, C. de C. (2014). Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). Diversity and Distributions, 20(10), 1108–1119. https://doi.org/10.1111/DDI.12217
dc.sourceFordyce, J. A. (2010). Host shifts and evolutionary radiations of butterflies. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 3735–3743. https://doi.org/10.1098/RSPB.2010.0211
dc.sourceFriedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Https://Doi.Org/10.1214/Aos/1016218223, 28(2), 337–407. https://doi.org/10.1214/AOS/1016218223
dc.sourceFutuyma, D. J., & Slatkin, Montgomery. (1983). Coevolution. 555.
dc.sourceGBIF.org. (2021). Global Biodiversity Information Facility . https://www.gbif.org.
dc.sourceGilbert, L. E. (1975). Ecological Consequences of a Coevolved Mutualism Between Butterflies and Plants. In Butterlies and Plants (pp. 210–240).
dc.sourceGilbert, L. E. (1982). The Coevolution of a Butterfly and a Vine. Scientific American, 247(2), 110–121. https://doi.org/10.1038/SCIENTIFICAMERICAN0882-110
dc.sourceGiraldo, N., Salazar, C., Jiggins, C. D., Bermingham, E., & Linares, M. (2008). Two sisters in the same dress: Heliconius cryptic species. BMC Evolutionary Biology 2008 8:1, 8(1), 1– 11. https://doi.org/10.1186/1471-2148-8-324
dc.sourceGonzález-Rojas, M. F. (2021). Intra and inter-specific communication in Heliconius.
dc.sourceGouveia, S. F., Hortal, J., Cassemiro, F. A. S., Rangel, T. F., & Diniz-Filho, J. A. F. (2013). Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 36(1), 104–113. https://doi.org/10.1111/J.1600- 0587.2012.07553.X
dc.sourceGuedes, T. B., Sawaya, R. J., Zizka, A., Laffan, S., Faurby, S., Pyron, R. A., Bérnils, R. S., Jansen, M., Passos, P., Prudente, A. L. C., Cisneros-Heredia, D. F., Braz, H. B., Nogueira, C. de C., & Antonelli, A. (2018). Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Global Ecology and Biogeography, 27(1), 14–21. https://doi.org/10.1111/GEB.12679
dc.sourceHawkins, B. A., & Porter, E. E. (2003). Water-energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecological Entomology, 28(6), 678– 686. https://doi.org/10.1111/J.1365-2311.2003.00551.X
dc.sourceHeiberger, R. H. (2020). Package “HH” Type Package Title Statistical Analysis and Data Display: Heiberger and Holland. Springer.
dc.sourceHembry, D. H., Yoder, J. B., & Goodman, K. R. (2014). Coevolution and the diversification of life. American Naturalist, 184(4), 425–438. https://doi.org/10.1086/677928
dc.sourceHernández, A., & Bernal, R. (2000). Lista de Especies de Passifloraceae de Colombia. Biota Colombiana, 1(3), 320–335.
dc.sourceHernández, A., & García, N. (2006). Libro rojo de plantas de Colombia:Las bromelias, las labiadas y las pasifloras (Vol. 3).
dc.sourceHijmans, R. J., Guarino, L., & Mathur, P. (2012). DIVA-GIS. http://www.geocities.com/SiliconValley/Network/2114/
dc.sourceJarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-Filled SRTM for the Globe Version 4.CGIAR-CSI SRTM 90 m. Https://Srtm.Csi.Cgiar.Org.
dc.sourceJiggins, C. D., & Lamas, G. (2017). The Ecology and Evolution of Heliconius Butterflies. The Ecology and Evolution of Heliconius Butterflies. https://doi.org/10.1093/ACPROF:OSO/9780199566570.001.0001
dc.sourceKaratzoglou, A., Hornik, K., Smola, A., & Zeileis, A. (2004). kernlab - An S4 package for kernel methods in R. Journal of Statistical Software, 11, 1–20. https://doi.org/10.18637/JSS.V011.I09
dc.sourceKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 1–20. https://doi.org/10.1038/sdata.2017.122
dc.sourceKemp, D. J. (2019). Manipulation of natal host modifies adult reproductive behaviour in the butterfly Heliconius charithonia. Proceedings of the Royal Society B, 286(1910). https://doi.org/10.1098/RSPB.2019.1225
dc.sourceKreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925–5930. https://doi.org/10.1073/PNAS.0608361104
dc.sourceKuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2021). Package “caret” Title Classification and Regression Training.
dc.sourceLake, T. A., Runquist, R. D. B., & Moeller, D. A. (2020). Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. Diversity and Distributions, 26(12), 1767–1779. https://doi.org/10.1111/DDI.13161
dc.sourceLeimu, R., Muola, A., Laukkanen, L., Kalske, A., Prill, N., & Mutikainen, P. (2012). Plant- herbivore coevolution in a changing world. Entomologia Experimentalis et Applicata, 144(1), 3–13. https://doi.org/10.1111/J.1570-7458.2012.01267.X
dc.sourceLiaw, A., & Wiener, M. (2002). Classification and Regression by randomForest (Vol. 2, Issue 3). http://www.stat.berkeley.edu/
dc.sourceLindberg, A., & Olesen, J. (2001). The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera. Journal of Tropical Ecology, 17(2), 323–329. https://doi.org/10.1017/S0266467401001213
dc.sourceMachado, C. A., Robbins, N., Gilbert, M. T. P., & Herre, E. A. (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences, 102(suppl 1), 6558–6565. https://doi.org/10.1073/PNAS.0501840102
dc.sourceMavárez, J., Salazar, C. A., Bermingham, E., Salcedo, C., Jiggins, C. D., & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441(7095), 868– 871. https://doi.org/10.1038/NATURE04738
dc.sourceMcCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.).
dc.sourceMendoza, A. M., & Arita, H. T. (2014). Priority setting by sites and by species using rarity, richness and phylogenetic diversity: The case of neotropical glassfrogs (Anura: Centrolenidae). Biodiversity and Conservation, 23(4), 909–926. https://doi.org/10.1007/S10531-014-0642-5
dc.sourceMerrill, R. M., Naisbit, R. E., Mallet, J., & Jiggins, C. D. (2013). Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. Journal of Evolutionary Biology, 26(9), 1959–1967. https://doi.org/10.1111/JEB.12194
dc.sourceMullen, S. P., Savage, W. K., Wahlberg, N., & Willmott, K. R. (2011). Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1777–1785. https://doi.org/10.1098/rspb.2010.2140
dc.sourceOcampo Pérez, J. (2007). Study of the diversity of genus Passiflora L. (Passifloraceae) and its distribution in Colombia.
dc.sourceO’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States Data Series 691. http://www.usgs.gov/pubprod
dc.sourceOssowski, A. (2002). Coevolution of Heliconius spp . and Passiflora spp .: A Phylogenetic Comparison . Brock University.
dc.sourcePaz, A., Brown, J. L., Cordeiro, C. L. O., Aguirre-Santoro, J., Assis, C., Amaro, R. C., Amaral, F. R. do, Bochorny, T., Bacci, L. F., Caddah, M. K., d’Horta, F., Kaehler, M., Lyra, M., Grohmann, C. H., Reginato, M., Silva-Brandão, K. L., Freitas, A. V. L., Goldenberg, R., Lohmann, L. G., ... Carnaval, A. C. (2021). Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. Journal of Biogeography, 48(6), 1377–1391. https://doi.org/10.1111/JBI.14083
dc.sourcePearson, D. L., & Carroll, S. S. (2010). Predicting Patterns of Tiger Beetle (Coleoptera: Cicindelidae) Species Richness in Northwestern South America. Http://Dx.Doi.Org/10.1076/Snfe.36.2.125.2139, 36(2), 125–136. https://doi.org/10.1076/SNFE.36.2.125.2139
dc.sourcePhillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
dc.sourceQGIS.org. (2021). QGIS Geographic Information System. (v. 3.10). QGIS Association.
dc.sourceRicklefs, R. E. (2010). Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences, 107(4), 1265–1272. https://doi.org/10.1073/PNAS.0913626107
dc.sourceRidgeway, G. (1999). The State of Boosting. Computing Science and Statistics, 31, 172–181.
dc.sourceRochette, S. (2018). Spatial correlation between rasters · StatnMap. https://statnmap.com/2018-01-27-spatial-correlation-between-rasters/
dc.sourceRosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R., & Mallet, J. (2012). Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biological Journal of the Linnean Society, 105(3), 479–497. https://doi.org/10.1111/J.1095-8312.2011.01814.X
dc.sourceRosser, S. (2012). Speciation and biogeography of heliconiine butterflies.
dc.sourceRueda, N., Salgado, F., Gantiva, C., Pardo-Díaz, C., & Salazar, C. (2021). How does the environment shape the distribution, richness, and natural hybridization of Heliconius butterflies?
dc.sourceSchmitt, S., Pouteau, R., Justeau, D., Boissieu, F. de, & Birnbaum, P. (2017). ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 8(12), 1795–1803. https://doi.org/10.1111/2041-210X.12841
dc.sourceSchmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., Baum-Bach, L., & Maintainer, P. B. (2020). Package “SSDM” Type Package Title Stacked Species Distribution Modelling Version 0.2.8.
dc.sourceSculfort, O., de Castro, E. C. P., Kozak, K. M., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 1(18).
dc.sourceSmiley, J. (1978). Plant chemistry and the evolution of host specificity: new evidence from Heliconius and Passiflora. Science, 201(25), 745–747.
dc.sourceSmiley, J. T. (1985). Are chemical barriers necessary for evolution of butterfly-plant associations? Oecologia 1985 65:4, 65(4), 580–583. https://doi.org/10.1007/BF00379676
dc.sourceSuchan, T., & Alvarez, N. (2015). Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomologia Experimentalis et Applicata, 157(1), 98–112. https://doi.org/10.1111/EEA.12348
dc.sourceThompson, J. (2005). Coevolution: The geographic mosaic of coevolutionary arms races. Current Biology, 15(24), 992–994. https://doi.org/10.1016/j.cub.2005.11.047
dc.sourceThuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
dc.sourceTitle, P. (2019). Package “rangeBuilder.” https://github.com/ptitle/rangeBuilder
dc.sourceUnión Internacional para la Conservación de la Naturaleza (IUCN). (2020). The IUCN Red List of Threatened Species. Version 2020-1.
dc.sourceVallejos-Garrido, P., Rivera, R., Inostroza-Michae, O., Rodríguez-Serrano, E., & Hernández, C. E. (2017). Historical dynamics and current environmental effects explain the spatial distribution of species richness patterns of New World monkeys. PeerJ, 2017(9). https://doi.org/10.7717/PEERJ.3850
dc.sourceVenables. Bill, & Ripley, B. (2002). Statistical Analysis of Financial Data in S-Plus. Statistical Analysis of Financial Data in S-Plus. https://doi.org/10.1007/B97626
dc.sourceWieczorek, J., Guo, Q., & Hijmans, R. J. (2004). The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science, 18(8), 745–767. https://doi.org/10.1080/13658810412331280211
dc.sourceWiklund, C. (1974). The Concept of Oligophagy and the Natural Habitats and Host Plants of Papilio machaon L. in Fennoscandia. Insect Systematics & Evolution, 5(2), 151–160. https://doi.org/10.1163/187631274x00191
dc.sourceWillis, A. D. (2019). Rarefaction, Alpha Diversity, and Statistics. Frontiers in Microbiology, 0(OCT), 2407. https://doi.org/10.3389/FMICB.2019.02407
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectHeliconius
dc.subjectPassiflora
dc.subjectRiqueza de especies
dc.subjectCoevolución
dc.subjectAnálisis espacial
dc.subjectModelos de distribución de especies (SDMs)
dc.titleCoevolución entre Heliconius y Passiflora: una búsqueda de evidencia desde su distribución geográfica y riqueza de especies
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución