dc.contributor | Salazar, Camilo | |
dc.contributor | Rueda, Nicol | |
dc.contributor | Genética Evolutiva, Filogeografía y Ecología de Biodiversidad Neotropical | |
dc.creator | Sánchez Melo, Catalina Sofía | |
dc.date.accessioned | 2021-10-01T21:16:34Z | |
dc.date.accessioned | 2022-09-22T14:49:57Z | |
dc.date.available | 2021-10-01T21:16:34Z | |
dc.date.available | 2022-09-22T14:49:57Z | |
dc.date.created | 2021-10-01T21:16:34Z | |
dc.identifier | https://repository.urosario.edu.co/handle/10336/32646 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3442527 | |
dc.description.abstract | The adaptive diversification of plants and their herbivorous insects could be influenced by coevolutionary processes. The biotic relationship between Heliconius butterflies and their host plants Passiflora has been studied from its morphological, physiological, and behavioural aspects. However, whether the degree of geographic correlation between their distributions and richness is informative regarding their coevolution has not been documented. To do this, I modelled the richness and distribution of 165 Passiflora and 34 Heliconius species in Colombia using four different algorithms. In both analyses, the environmental variable that best explains the observed patterns was identified. I compared the distribution pattern between a monophagous species H.eleuchia and its host plants and the oligophagous H.cydno with its 28 host plants. I found that the degree of overlap of Passiflora and Heliconius is low, and its richness is explained by different environmental variables –isothermality on the former and seasonality of precipitation on the latter–. Nevertheless, the most important variable for the distribution of both groups is the annual temperature range. The distribution of H.eleuchia has a higher correlation with its host plants than the distribution of H.cydno, which is consistent with the monophagy and oligophagy of its larvae, respectively. Other ecological factors such as toxicity deserve more attention as potential drivers of coevolution. On a geographical scale, it can be concluded that the pattern of diversification of both genera is likely to be different. Furthermore, since they do not share species richness hotspots, my results are not compatible with a strict coevolution scenario. | |
dc.language | spa | |
dc.publisher | Universidad del Rosario | |
dc.publisher | Biología | |
dc.publisher | Facultad de Ciencias Naturales | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | Restringido (Temporalmente bloqueado) | |
dc.rights | EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. | |
dc.source | Acevedo, D., & Currie, D. (2003). Does Climate Determine Broad-Scale Patterns of Species Richness? A Test of the Causal Link by Natural Experiment on JSTOR. Global Ecology and Biogeography, 12(6). https://www.jstor.org/stable/3697428 | |
dc.source | Agrawal, A. A., & Zhang, X. (2021). The evolution of coevolution in the study of species interactions. Evolution, 75(7), 1594–1606. https://doi.org/10.1111/EVO.14293 | |
dc.source | Aguirre-Morales, A. C., Bonilla-Morales, M. M., & Caetano, C. M. (2016). Evaluación de la diversidad y patrones de distribución de Passiflora subgénero Astrophea (Passifloraceae) en Colombia. Un reto para la investigación taxonómica, florística y de conservación de las especies. Acta Agronomica, 65(4). https://doi.org/10.15446/acag.v65n4.51444 | |
dc.source | Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x | |
dc.source | Apple, J. L., & Feener, D. H. (2001). Ant visitation of extrafloral nectaries of Passiflora: The effects of nectary attributes and ant behavior on patterns in facultative ant-plant mutualisms. Oecologia, 127(3), 409–416. https://doi.org/10.1007/S004420000605 | |
dc.source | Assis, J. (2020). R Pipelines to reduce the spatial autocorrelation in Species Distribution Models. Https://Github.Com/Jorgeassis/SpatialAutocorrelation. | |
dc.source | Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/S0167-7012(00)00201-3 | |
dc.source | Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley (Lepidoptera : Heliconidae). Transactions Ofthe Linnean Society of London, 23, 495–496. | |
dc.source | Beccaloni, George. (2008). Catalogue of the hostplants of the neotropical butterflies. Monografías 3ercer Milenio, 8(January), 536. | |
dc.source | Benson, W. W., Brown, K. S., & Gilbert, L. E. (1975). Coevolution of Plants and Herbivores: Passion Flower Butterflies. Evolution, 29(4), 659. https://doi.org/10.2307/2407076 | |
dc.source | Berg, C. C., & Wiebes, J. T. (1992). African fig trees and fig wasps. North-Holland. | |
dc.source | Bernays, E. A., & Chapman, R. F. (1994). Host-plant selection by phytophagous insects. | |
dc.source | Bonilla, M. M. (2014). Biogeografía y morfología de las Passifloraceae (Subg. Tacsonia, Rathea y Manicata). Universidad Nacional de Colombia, 101. | |
dc.source | Brown, K. S. Jr. (1981). The Biology of Heliconius and Related Genera. Annu. Rev. Entomol., 26. www.annualreviews.org/aronline | |
dc.source | Cuesta, F., Muriel, P., Llambí, L. D., Halloy, S., Aguirre, N., Beck, S., Carilla, J., Meneses, R. I., Cuello, S., Grau, A., Gámez, L. E., Irazábal, J., Jácome, J., Jaramillo, R., Ramírez, L., Samaniego, N., Suárez-Duque, D., Thompson, N., Tupayachi, A., ... Gosling, W. D. (2017). Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography, 40(12), 1381–1394. https://doi.org/10.1111/ECOG.02567 | |
dc.source | Darragh, K., Byers, K. J. R. P., Merrill, R. M., McMillan, W. O., Schulz, S., & Jiggins, C. D. (2019). Male pheromone composition depends on larval but not adult diet in Heliconius melpomene. Ecological Entomology, 44(3), 397–405. https://doi.org/10.1111/EEN.12716 | |
dc.source | Daru, B. H., Karunarathne, P., & Schliep, K. (2020). phyloregion: R package for biogeographical regionalization and macroecology. Methods in Ecology and Evolution, 11(11), 1483–1491. https://doi.org/10.1111/2041-210X.13478 | |
dc.source | Davies, T. J., & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2414–2425. https://doi.org/10.1098/RSTB.2011.0058 | |
dc.source | de Castro, É. C. P., Zagrobelny, M., Cardoso, M. Z., & Bak, S. (2017). The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject. Biological Reviews, 93(1), 555–573. https://doi.org/10.1111/BRV.12357 | |
dc.source | Dell’Aglio, D. D., Losada, M. E., & Jiggins, C. D. (2016). Butterfly learning and the diversification of plant leaf shape. Frontiers in Ecology and Evolution, 4(JUL). https://doi.org/10.3389/FEVO.2016.00081 | |
dc.source | Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600- 0587.2012.07348.x | |
dc.source | Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and Plants: A Study in Coevolution. Evolution, 18(4), 586. https://doi.org/10.2307/2406212 | |
dc.source | Endress, P. K. (1996). Diversity and evolutionary biology of tropical flowers. 511. | |
dc.source | Fenker, J., Tedeschi, L. G., Pyron, R. A., & Nogueira, C. de C. (2014). Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). Diversity and Distributions, 20(10), 1108–1119. https://doi.org/10.1111/DDI.12217 | |
dc.source | Fordyce, J. A. (2010). Host shifts and evolutionary radiations of butterflies. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 3735–3743. https://doi.org/10.1098/RSPB.2010.0211 | |
dc.source | Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Https://Doi.Org/10.1214/Aos/1016218223, 28(2), 337–407. https://doi.org/10.1214/AOS/1016218223 | |
dc.source | Futuyma, D. J., & Slatkin, Montgomery. (1983). Coevolution. 555. | |
dc.source | GBIF.org. (2021). Global Biodiversity Information Facility . https://www.gbif.org. | |
dc.source | Gilbert, L. E. (1975). Ecological Consequences of a Coevolved Mutualism Between Butterflies and Plants. In Butterlies and Plants (pp. 210–240). | |
dc.source | Gilbert, L. E. (1982). The Coevolution of a Butterfly and a Vine. Scientific American, 247(2), 110–121. https://doi.org/10.1038/SCIENTIFICAMERICAN0882-110 | |
dc.source | Giraldo, N., Salazar, C., Jiggins, C. D., Bermingham, E., & Linares, M. (2008). Two sisters in the same dress: Heliconius cryptic species. BMC Evolutionary Biology 2008 8:1, 8(1), 1– 11. https://doi.org/10.1186/1471-2148-8-324 | |
dc.source | González-Rojas, M. F. (2021). Intra and inter-specific communication in Heliconius. | |
dc.source | Gouveia, S. F., Hortal, J., Cassemiro, F. A. S., Rangel, T. F., & Diniz-Filho, J. A. F. (2013). Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 36(1), 104–113. https://doi.org/10.1111/J.1600- 0587.2012.07553.X | |
dc.source | Guedes, T. B., Sawaya, R. J., Zizka, A., Laffan, S., Faurby, S., Pyron, R. A., Bérnils, R. S., Jansen, M., Passos, P., Prudente, A. L. C., Cisneros-Heredia, D. F., Braz, H. B., Nogueira, C. de C., & Antonelli, A. (2018). Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Global Ecology and Biogeography, 27(1), 14–21. https://doi.org/10.1111/GEB.12679 | |
dc.source | Hawkins, B. A., & Porter, E. E. (2003). Water-energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecological Entomology, 28(6), 678– 686. https://doi.org/10.1111/J.1365-2311.2003.00551.X | |
dc.source | Heiberger, R. H. (2020). Package “HH” Type Package Title Statistical Analysis and Data Display: Heiberger and Holland. Springer. | |
dc.source | Hembry, D. H., Yoder, J. B., & Goodman, K. R. (2014). Coevolution and the diversification of life. American Naturalist, 184(4), 425–438. https://doi.org/10.1086/677928 | |
dc.source | Hernández, A., & Bernal, R. (2000). Lista de Especies de Passifloraceae de Colombia. Biota Colombiana, 1(3), 320–335. | |
dc.source | Hernández, A., & García, N. (2006). Libro rojo de plantas de Colombia:Las bromelias, las labiadas y las pasifloras (Vol. 3). | |
dc.source | Hijmans, R. J., Guarino, L., & Mathur, P. (2012). DIVA-GIS. http://www.geocities.com/SiliconValley/Network/2114/ | |
dc.source | Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-Filled SRTM for the Globe Version 4.CGIAR-CSI SRTM 90 m. Https://Srtm.Csi.Cgiar.Org. | |
dc.source | Jiggins, C. D., & Lamas, G. (2017). The Ecology and Evolution of Heliconius Butterflies. The Ecology and Evolution of Heliconius Butterflies. https://doi.org/10.1093/ACPROF:OSO/9780199566570.001.0001 | |
dc.source | Karatzoglou, A., Hornik, K., Smola, A., & Zeileis, A. (2004). kernlab - An S4 package for kernel methods in R. Journal of Statistical Software, 11, 1–20. https://doi.org/10.18637/JSS.V011.I09 | |
dc.source | Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 1–20. https://doi.org/10.1038/sdata.2017.122 | |
dc.source | Kemp, D. J. (2019). Manipulation of natal host modifies adult reproductive behaviour in the butterfly Heliconius charithonia. Proceedings of the Royal Society B, 286(1910). https://doi.org/10.1098/RSPB.2019.1225 | |
dc.source | Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925–5930. https://doi.org/10.1073/PNAS.0608361104 | |
dc.source | Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2021). Package “caret” Title Classification and Regression Training. | |
dc.source | Lake, T. A., Runquist, R. D. B., & Moeller, D. A. (2020). Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. Diversity and Distributions, 26(12), 1767–1779. https://doi.org/10.1111/DDI.13161 | |
dc.source | Leimu, R., Muola, A., Laukkanen, L., Kalske, A., Prill, N., & Mutikainen, P. (2012). Plant- herbivore coevolution in a changing world. Entomologia Experimentalis et Applicata, 144(1), 3–13. https://doi.org/10.1111/J.1570-7458.2012.01267.X | |
dc.source | Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest (Vol. 2, Issue 3). http://www.stat.berkeley.edu/ | |
dc.source | Lindberg, A., & Olesen, J. (2001). The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera. Journal of Tropical Ecology, 17(2), 323–329. https://doi.org/10.1017/S0266467401001213 | |
dc.source | Machado, C. A., Robbins, N., Gilbert, M. T. P., & Herre, E. A. (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences, 102(suppl 1), 6558–6565. https://doi.org/10.1073/PNAS.0501840102 | |
dc.source | Mavárez, J., Salazar, C. A., Bermingham, E., Salcedo, C., Jiggins, C. D., & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441(7095), 868– 871. https://doi.org/10.1038/NATURE04738 | |
dc.source | McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). | |
dc.source | Mendoza, A. M., & Arita, H. T. (2014). Priority setting by sites and by species using rarity, richness and phylogenetic diversity: The case of neotropical glassfrogs (Anura: Centrolenidae). Biodiversity and Conservation, 23(4), 909–926. https://doi.org/10.1007/S10531-014-0642-5 | |
dc.source | Merrill, R. M., Naisbit, R. E., Mallet, J., & Jiggins, C. D. (2013). Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. Journal of Evolutionary Biology, 26(9), 1959–1967. https://doi.org/10.1111/JEB.12194 | |
dc.source | Mullen, S. P., Savage, W. K., Wahlberg, N., & Willmott, K. R. (2011). Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1777–1785. https://doi.org/10.1098/rspb.2010.2140 | |
dc.source | Ocampo Pérez, J. (2007). Study of the diversity of genus Passiflora L. (Passifloraceae) and its distribution in Colombia. | |
dc.source | O’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States Data Series 691. http://www.usgs.gov/pubprod | |
dc.source | Ossowski, A. (2002). Coevolution of Heliconius spp . and Passiflora spp .: A Phylogenetic Comparison . Brock University. | |
dc.source | Paz, A., Brown, J. L., Cordeiro, C. L. O., Aguirre-Santoro, J., Assis, C., Amaro, R. C., Amaral, F. R. do, Bochorny, T., Bacci, L. F., Caddah, M. K., d’Horta, F., Kaehler, M., Lyra, M., Grohmann, C. H., Reginato, M., Silva-Brandão, K. L., Freitas, A. V. L., Goldenberg, R., Lohmann, L. G., ... Carnaval, A. C. (2021). Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. Journal of Biogeography, 48(6), 1377–1391. https://doi.org/10.1111/JBI.14083 | |
dc.source | Pearson, D. L., & Carroll, S. S. (2010). Predicting Patterns of Tiger Beetle (Coleoptera: Cicindelidae) Species Richness in Northwestern South America. Http://Dx.Doi.Org/10.1076/Snfe.36.2.125.2139, 36(2), 125–136. https://doi.org/10.1076/SNFE.36.2.125.2139 | |
dc.source | Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049 | |
dc.source | QGIS.org. (2021). QGIS Geographic Information System. (v. 3.10). QGIS Association. | |
dc.source | Ricklefs, R. E. (2010). Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences, 107(4), 1265–1272. https://doi.org/10.1073/PNAS.0913626107 | |
dc.source | Ridgeway, G. (1999). The State of Boosting. Computing Science and Statistics, 31, 172–181. | |
dc.source | Rochette, S. (2018). Spatial correlation between rasters · StatnMap. https://statnmap.com/2018-01-27-spatial-correlation-between-rasters/ | |
dc.source | Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R., & Mallet, J. (2012). Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biological Journal of the Linnean Society, 105(3), 479–497. https://doi.org/10.1111/J.1095-8312.2011.01814.X | |
dc.source | Rosser, S. (2012). Speciation and biogeography of heliconiine butterflies. | |
dc.source | Rueda, N., Salgado, F., Gantiva, C., Pardo-Díaz, C., & Salazar, C. (2021). How does the environment shape the distribution, richness, and natural hybridization of Heliconius butterflies? | |
dc.source | Schmitt, S., Pouteau, R., Justeau, D., Boissieu, F. de, & Birnbaum, P. (2017). ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 8(12), 1795–1803. https://doi.org/10.1111/2041-210X.12841 | |
dc.source | Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., Baum-Bach, L., & Maintainer, P. B. (2020). Package “SSDM” Type Package Title Stacked Species Distribution Modelling Version 0.2.8. | |
dc.source | Sculfort, O., de Castro, E. C. P., Kozak, K. M., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 1(18). | |
dc.source | Smiley, J. (1978). Plant chemistry and the evolution of host specificity: new evidence from Heliconius and Passiflora. Science, 201(25), 745–747. | |
dc.source | Smiley, J. T. (1985). Are chemical barriers necessary for evolution of butterfly-plant associations? Oecologia 1985 65:4, 65(4), 580–583. https://doi.org/10.1007/BF00379676 | |
dc.source | Suchan, T., & Alvarez, N. (2015). Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomologia Experimentalis et Applicata, 157(1), 98–112. https://doi.org/10.1111/EEA.12348 | |
dc.source | Thompson, J. (2005). Coevolution: The geographic mosaic of coevolutionary arms races. Current Biology, 15(24), 992–994. https://doi.org/10.1016/j.cub.2005.11.047 | |
dc.source | Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x | |
dc.source | Title, P. (2019). Package “rangeBuilder.” https://github.com/ptitle/rangeBuilder | |
dc.source | Unión Internacional para la Conservación de la Naturaleza (IUCN). (2020). The IUCN Red List of Threatened Species. Version 2020-1. | |
dc.source | Vallejos-Garrido, P., Rivera, R., Inostroza-Michae, O., Rodríguez-Serrano, E., & Hernández, C. E. (2017). Historical dynamics and current environmental effects explain the spatial distribution of species richness patterns of New World monkeys. PeerJ, 2017(9). https://doi.org/10.7717/PEERJ.3850 | |
dc.source | Venables. Bill, & Ripley, B. (2002). Statistical Analysis of Financial Data in S-Plus. Statistical Analysis of Financial Data in S-Plus. https://doi.org/10.1007/B97626 | |
dc.source | Wieczorek, J., Guo, Q., & Hijmans, R. J. (2004). The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science, 18(8), 745–767. https://doi.org/10.1080/13658810412331280211 | |
dc.source | Wiklund, C. (1974). The Concept of Oligophagy and the Natural Habitats and Host Plants of Papilio machaon L. in Fennoscandia. Insect Systematics & Evolution, 5(2), 151–160. https://doi.org/10.1163/187631274x00191 | |
dc.source | Willis, A. D. (2019). Rarefaction, Alpha Diversity, and Statistics. Frontiers in Microbiology, 0(OCT), 2407. https://doi.org/10.3389/FMICB.2019.02407 | |
dc.source | instname:Universidad del Rosario | |
dc.source | reponame:Repositorio Institucional EdocUR | |
dc.subject | Heliconius | |
dc.subject | Passiflora | |
dc.subject | Riqueza de especies | |
dc.subject | Coevolución | |
dc.subject | Análisis espacial | |
dc.subject | Modelos de distribución de especies (SDMs) | |
dc.title | Coevolución entre Heliconius y Passiflora: una búsqueda de evidencia desde su distribución geográfica y riqueza de especies | |
dc.type | bachelorThesis | |