dc.contributorRamírez, Juan David
dc.creatorRamírez Hernández, Angie Lorena
dc.date.accessioned2021-02-17T13:20:08Z
dc.date.accessioned2022-09-22T14:45:48Z
dc.date.available2021-02-17T13:20:08Z
dc.date.available2022-09-22T14:45:48Z
dc.date.created2021-02-17T13:20:08Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/30926
dc.identifierhttps://doi.org/10.48713/10336_30926
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3441876
dc.description.abstractAlterations in gut microbiota associated with the presence of parasites have been a focus of research attention due to its importance in physiological processes and animal productivity. Within the field of host-parasite relationships, many studies have suggested that helminths can influence microbial composition due to their immunomodulatory effect. Bovine fascioliasis is helminthiasis widely studied in the field of immunology, but with few information in the field of host-helminth interactions, so its impact on microbial communities is unknown. For this reason, this study aims to describe the composition of the gut microbiota of Holstein cattle parasitized by Fasciola in the Colombian Cundiboyacense highlands through a new generation sequencing approach of rRNA-16S gene amplicons for prokaryotes and rRNA. -18S for eukaryotes. Thus, 65 fecal samples of Holstein cattle from animal benefit plants were collected. We found a reduction in the relative abundance of Bacteroidetes and Ascomycota in the samples of bovines infected with the parasite, as well as a decrease in the relative abundance of commensal taxa associated with fermentation and digestion processes. Additionally, we found positive correlations between microorganisms that presented reductions in relative abundances in the samples positive for Fasciola, which was associated with weight loss consistent with the phenotype of a bovine infected by this parasite. Therefore, we concluded that Fasciola infection decreases the ability to digest plant material in bovines as a consequence of the reduction in the abundance of taxa responsible for this function. These findings provide a basis for future research on the development of treatments aimed at modulating these microbial populations involved in infection.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.sourceBalvočiūtė, M., & Huson, D. H. (2017). SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC genomics, 18(2), 1-8.
dc.sourceBozorov, T. A., Rasulov, B. A., & Zhang, D. (2019). Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria. Scientific reports, 9(1), 1-12.
dc.sourceCancela, M., Santos, G. B., Carmona, C., Ferreira, H. B., TORT, J. F., & Zaha, A. (2015). Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host–parasite relationship. Parasitology, 142(14), 1673-1681.
dc.sourceCastillo-Lopez, E., & Domínguez-Ordóñez, M. G. (2019). Factors affecting the ruminal microbial composition and methods to determine microbial protein yield. Review. Revista Mexicana de Ciencias Pecuarias, 10(1)
dc.sourceCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
dc.sourceCallahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME journal, 11(12), 2639-2643.
dc.sourceChassard C., Delmas E., Robert C., Lawson P. A., Bernalier-Donadille A. (2012). Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 62, 138–143. 10.1099/ijs.0.027375-0
dc.sourceCortés, A., Peachey, L. E., Jenkins, T. P., Scotti, R., & Cantacessi, C. (2019a). Helminths and microbes within the vertebrate gut – not all studies are created equal. Parasitology, 1–25. doi:10.1017/s003118201900088x
dc.sourceCortés, A., Peachey, L., Scotti, R., Jenkins, T. P., & Cantacessi, C. (2019b). Helminth-microbiota cross-talk – a journey through the vertebrate digestive system. Molecular and Biochemical Parasitology, 111222. doi:10.1016/j.molbiopara.2019.111222
dc.sourceCortés, A., Rooney, J., Bartley, D. J., Nisbet, A. J., & Cantacessi, C. (2020a). Helminths, hosts, and their microbiota: new avenues for managing gastrointestinal helminthiases in ruminants. Expert Review of Anti-infective Therapy.
dc.sourceCortés, A., Wills, J., Su, X., Hewitt, R. E., Robertson, J., Scotti, R., ... & Powell, J. J. (2020b). Infection with the sheep gastrointestinal nematode Teladorsagia circumcincta increases luminal pathobionts. Microbiome, 8, 1-15.
dc.sourceDurso, L. M., Harhay, G. P., Smith, T. P., Bono, J. L., DeSantis, T. Z., Harhay, D. M., ... & Clawson, M. L. (2010). Animal-to-animal variation in fecal microbial diversity among beef cattle. Applied and environmental microbiology, 76(14), 4858-4862.
dc.sourceEl-Ashram, S., Al Nasr, I., Abouhajer, F., El-Kemary, M., Huang, G., Dinçel, G., ... & Suo, X. (2017). Microbial community and ovine host response varies with early and late stages of Haemonchus contortus infection. Veterinary research communications, 41(4), 263-277.
dc.sourceEwels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single repor| 11111111vcc t. Bioinformatics, 32(19), 3047-3048.
dc.sourceFan, P., Bian, B., Teng, L., Nelson, C. D., Driver, J., Elzo, M. A., & Jeong, K. C. (2020). Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. The ISME journal, 14(1), 302-317.
dc.sourceFreitas, A., David, D., Takagaki, B., & Roesch, L. F. W. (2020). Microbial Patterns in Rumen Are Associated with Gain of Weight in Beef Cattle.
dc.sourceGordon, C. A., Krause, L., McManus, D. P., Morrison, M., Weerakoon, K. G., Connor, M. C., ... & Gobert, G. N. (2020). Helminths, polyparasitism, and the gut microbiome in the Philippines. International Journal for Parasitology.
dc.sourceHoulden, A., Hayes, K. S., Bancroft, A. J., Worthington, J. J., Wang, P., Grencis, R. K., & Roberts, I. S. (2015). Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance. PloS one, 10(5), e0125945.
dc.sourceHolman, D. B., & Gzyl, K. E. (2019). A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS microbiology ecology, 95(6), fiz072.
dc.sourceJami, E., & Mizrahi, I. (2012). Composition and Similarity of Bovine Rumen Microbiota across Individual Animals. PLoS ONE, 7(3), e33306. doi:10.1371/journal.pone.0033306
dc.sourceJenkins, T. P., Peachey, L. E., Ajami, N. J., MacDonald, A. S., Hsieh, M. H., Brindley, P. J., ... & Rinaldi, G. (2018). Schistosoma mansoni infection is associated with quantitative and qualitative modifications of the mammalian intestinal microbiota. Scientific reports, 8(1), 1-10.
dc.sourceJohnson, E. L., Heaver, S. L., Walters, W. A., & Ley, R. E. (2017). Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 95(1), 1-8.
dc.sourceKim, J. Y., Kim, E. M., Yi, M. H., Lee, J., Lee, S., Hwang, Y., ... & Yong, T. S. (2019). Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice. Parasitology research, 118(2), 693-699.
dc.sourceKoh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345. doi:10.1016/j.cell.2016.05.041
dc.sourceLi, R. W., Wu, S., Li, W., Huang, Y., & Gasbarre, L. C. (2011). Metagenome plasticity of the bovine abomasal microbiota in immune animals in response to Ostertagia ostertagi infection. PloS one, 6(9), e24417.
dc.sourceLi, R. W., Li, W., Sun, J., Yu, P., Baldwin, R. L., & Urban, J. F. (2016). The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Scientific reports, 6(1), 1-10.
dc.sourceLi, Y., Ruperao, P., Batley, J., Edwards, D., Davidson, J., Hobson, K., & Sutton, T. (2017). Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data. Frontiers in plant science, 8, 359.
dc.sourceLiu, J. H., Bian, G. R., Zhu, W. Y., & Mao, S. Y. (2015). High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Frontiers in microbiology, 6, 167.
dc.sourceLiu, P. Y., Wu, W. K., Chen, C. C., Panyod, S., Sheen, L. Y., & Wu, M. S. (2020). Evaluation of Compatibility of 16S rRNA V3V4 and V4 Amplicon Libraries for Clinical Microbiome Profiling. bioRxiv.
dc.sourceMartínez-Álvaro, M., Auffret, M. D., Stewart, R. D., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., ... & Roehe, R. (2020). Identification of complex rumen microbiome interaction within diverse functional niches as mechanisms affecting the variation of methane emissions in bovine. Frontiers in microbiology, 11, 659
dc.sourceMahami-Oskouei, M., Dalimi, A., Forouzandeh-Moghadam, M., y Rokni, M. (2011). Identificación molecular y diferenciación de aislados de Fasciola mediante el método PCR-RFLP basado en el espaciador transcrito interno (ITS1, 5.8S rDNA, ITS2). Revista iraní de parasitología, 6 (3), 35–42.
dc.sourceMolina-Hernández, V., Mulcahy, G., Pérez, J., Martínez-Moreno, Á., Donnelly, S., O’Neill, S. M., ... & Cwiklinski, K. (2015). Fasciola hepatica vaccine: we may not be there yet but we’re on the right road. Veterinary parasitology, 208(1-2), 101-111.
dc.sourceMolloy, J. B., Anderson, G. R., Fletcher, T. I., Landmann, J., & Knight, B. C. (2005). Evaluation of a commercially available enzyme-linked immunosorbent assay for detecting antibodies to Fasciola hepatica and Fasciola gigantica in cattle, sheep and buffaloes in Australia. Veterinary parasitology, 130(3-4), 207-212.
dc.sourceMcGovern, E., McGee, M., Byrne, C. J., Kenny, D. A., Kelly, A. K., & Waters, S. M. (2020). Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed. Scientific Reports, 10(1), 1-11.
dc.sourceMcMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 8(4), e61217.
dc.sourceNagaraja, T. G., & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of dairy science, 90, E17-E38.
dc.sourceNagpal, R., Puniya, A. K., Sehgal, J. P., & Singh, K. (2011). In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. Mycoscience, 52(1), 31–38. doi:10.1007/s10267-010-0071-6
dc.sourceNameth, S. T., Shane, W. W., & Stier, J. C. (1990). Development of a monoclonal antibody for detection of Leptosphaeria korrae, the causal agent of necrotic ringspot disease of turfgrass. Phytopathology, 80(11), 1208-1211.
dc.sourceNiyo, K. A., Richard, J. L., Niyo, Y., & Tiffany, L. H. (1988). Effects of T-2 mycotoxin ingestion on phagocytosis of Aspergillus fumigatus conidia by rabbit alveolar macrophages and on hematologic, serum biochemical, and pathologic changes in rabbits. American journal of veterinary research, 49(10), 1766-1773.
dc.sourceOki, K., Toyama, M., Banno, T., Chonan, O., Benno, Y., & Watanabe, K. (2016). Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC microbiology, 16(1), 284.
dc.sourceOrrego, V. E. E., Gómez, M. G., & Trujillo, L. E. V. (2006). La higiene del ganado y la fasciolosis bovina, Medellín y Rionegro, 1914-1970. Iatreia, 19(4), 393-407.
dc.sourcePalacios, D., Bertot, J. A., Beltrao, M., Vázquez, Á., Ortíz, R. C., & Varona, M. (2019). Economic losses induced by Fasciola hepatica in cattle slaughtered in Chacuba slaughterhouse, Camagüey, Cuba. Cuban Journal of Agricultural Science, 53(1), 1–5.
dc.sourceSalimi-Bejestani, M. R., McGarry, J. W., Felstead, S., Ortiz, P., Akca, A., & Williams, D. J. (2005). Development of an antibody-detection ELISA for Fasciola hepatica and its evaluation against a commercially available test. Research in veterinary science, 78(2), 177-181.
dc.sourceSeyedmousavi, S., Guillot, J., Arné, P., De Hoog, G. S., Mouton, J. W., Melchers, W. J., & Verweij, P. E. (2015). Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Medical Mycology, 53(8), 765-797
dc.sourceSierra, C., Portillo, J., Tafur, G., Martínez, L (2018).Ovine and caprine fasciolosis incidence in the north of Cesar and south of The Guajira. Recuperado de: https://www.researchgate.net/publication/328554691
dc.sourceTao, S., Tian, P., Luo, Y., Tian, J., Hua, C., Geng, Y., ... & Zhao, R. (2017). Microbiome-metabolome responses to a high-grain diet associated with the hind-gut health of goats. Frontiers in microbiology, 8, 1764
dc.sourceTheodoropoulos, G., Hicks, S. J., Corfield, A. P., Miller, B. G., & Carrington, S. D. (2001). The role of mucins in host–parasite interactions: Part II–helminth parasites. Trends in parasitology, 17(3), 130-135.
dc.sourceUchiyama, J., Murakami, H., Sato, R., Mizukami, K., Suzuki, T., Shima, A., ... & Sakaguchi, M. (2020). Examination of the fecal microbiota in dairy cows infected with bovine leukemia virus. Veterinary Microbiology, 240, 108547.
dc.sourceReynolds, L. A., Finlay, B. B., & Maizels, R. M. (2015). Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity. The Journal of Immunology, 195(9), 4059-4066.
dc.sourceWang, K., Yin, X., Mao, H., Chu, C., & Tian, Y. (2018). Changes in structure and function of fungal community in cow manure composting. Bioresource technology, 255, 123-130.
dc.sourceWingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7.
dc.sourceXu, M., Jiang, Z., Huang, W., Yin, J., Ou, S., Jiang, Y., ... & Shen, Y. (2018). Altered gut microbiota composition in subjects infected with Clonorchis sinensis. Frontiers in microbiology, 9, 2292
dc.sourceZhang, Z. Y., Chen, W. H., Zou, X., Han, Y. F., Huang, J. Z., Liang, Z. Q., & Deshmukh, S. K. (2019). Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China. MycoKeys, 57, 47.
dc.sourceZhang, N., & Wang, Z. (2015). 3 Pezizomycotina: Sordariomycetes and Leotiomycetes. In Systematics and Evolution (pp. 57-88). Springer, Berlin, Heidelberg.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectFasciolosis hepática en bovinos
dc.subjectCambios en la microbiota intestinal bobina por helmintiasis
dc.subjectCambios microbiológicos por enfermedades parasitarias
dc.titleCaracterización de la microbiota intestinal de bovinos raza Holstein parasitados por Fasciola spp. en Cundinamarca y Boyacá, Colombia.
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución