dc.contributorCorrales Osorio, Adriana
dc.contributorBottin, Marius
dc.creatorRendón Espinosa, Miguel Ángel
dc.date.accessioned2020-08-20T20:15:52Z
dc.date.accessioned2022-09-22T14:41:53Z
dc.date.available2020-08-20T20:15:52Z
dc.date.available2022-09-22T14:41:53Z
dc.date.created2020-08-20T20:15:52Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/28203
dc.identifierhttps://doi.org/10.48713/10336_28203
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3441345
dc.description.abstractMycorrhizal fungi play key roles in the functioning of terrestrial ecosystems. The main types of mycorrhizal associations are arbuscular mycorrhizas (AM), ectomycorrhizas (EcM), ericoid mycorrhizas (ErM) and orchid mycorrhizas (OM). Previous studies have shown that the abundance of AM, EcM and ErM plants change gradually along latitudinal and altitudinal gradients driven by the effects of climate on decomposition, reflected in the accumulation of carbon and nutrients in the soil. The Colombian Andean mountain range reaches altitudes over 5,000 m and it is a great system to test the effects of altitude in tropical ecosystems. We aimed to understand how altitude and climatic and soil conditions shape the distribution patterns of mycorrhizal types in plant species distributed in this region. To test this, we used an herbarium plant record database and assigned mycorrhizal type based on the available literature. We also used bioclimatic and soil variables at a resolution of 10 km. We calculated the proportion of each of the different mycorrhizal associations types per grid cell and created a diversity index to explore their spatial distribution and their association with abiotic factors based on GLMs. We found that the diversity of mycorrhizal associations increases with altitude and soil carbon stock.
dc.languageeng
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceAverill, C., Turner, B. L., and Finzi, A. C. (2014). Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543–545. https ://doi.org/10.1038/nature12901
dc.sourceBarceló, M., van Bodegom, P. M., and Soudzilovskaia, N. A. (2019). Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. Journal of Ecology, 107(6), 2564-2573
dc.sourceBarón, J. D. (2010). Geografía económica de los Andes Occidentales de Colombia (No. 006841). Banco de la República-Economía Regional.
dc.sourceBennett, J. A., Maherali, H., Reinhart, K. O., Lekberg, Y., Hart, M. M., and Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355(6321), 181-184
dc.sourceBonilla, H. (2001). Minería, mano de obra, y circulación monetaria en los Andes colombianos del siglo XVII. Fronteras de la Historia, (6), 142-158.
dc.sourceBottin, M., Peyre, G., Vargas, C., Raz, L., Richardson, J. E., and Sanchez, A. Phytosociological data and herbarium collections show congruent large scale patterns but differ in their local descriptions of community composition. Journal of Vegetation Science.
dc.sourceBrundrett, M. C., and Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108-1115.
dc.sourceCheeke, T. E., Phillips, R. P., Brzostek, E. R., Rosling, A., Bever, J. D., and Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214(1), 432-442
dc.sourceCorrales, A., Mangan, S. A., Turner, B. L., and Dalling, J. W. (2016). An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 19(4), 383-392
dc.sourceDuque, A., Álvarez, E., Rodríguez, W., and Lema, Á. (2013). Impacto de la fragmentación en la diversidad de plantas vasculares en bosques andinos del nororiente de Colombia. Colombia Forestal, 16(2), 115-137
dc.sourceGALINDO, R., BETANCUR, J., and CADENA, J. J. (2003). Estructura y composición florística de cuatro bosques andinos del santuario de flora y fauna Guanentá-alto río Fonce, cordillera oriental colombiana. Caldasia, 25(2), 313-335.
dc.sourceKlironomos, J., Zobel, M., Tibbett, M., Stock, W. D., Rillig, M. C.,. Parrent, J. L., … Bever, J. D. (2011). Forces that structure plant communities: Quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 189, 366–370. https ://doi. org/10.1111/j.1469-8137.2010.03550.x
dc.sourceKlironomos, J., Zobel, M., Tibbett, M., Stock, W. D., Rillig, M. C.,. Parrent, J. L., … Bever, J. D. (2011). Forces that structure plant communities: Quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 189, 366–370. https ://doi. org/10.1111/j.1469-8137.2010.03550.x
dc.sourceLegendre, P. (2008). Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1(1), 3-8
dc.sourceLeifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K., and Rillig, M.C. (2013). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta‐analysis. Plant and Soil, 374, 523–537. https ://doi.org/10.1007/s11104-013-1899-2.
dc.sourceMantilla, L. C., Mendoza, H., Bissig, T., and Craig, H. (2011). Nuevas evidencias sobre el magmatismo Miocenico en el distrito minero de Vetas-California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología, 33(1).
dc.sourceMcguire, K., Henkel, T., De La Cerda, I. G., Villa, G., Edmund, F., and Andrew, C. (2008). Dual mycorrhizal colonization of forest‐dominating tropical trees and the mycorrhizal status of non‐dominant tree and liana species. Mycorrhiza, 18, 217–222. https ://doi.org/10.1007/ s00572-008-0170-9
dc.sourceRead, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391. https ://doi.org/10.1007/BF019 72080
dc.sourceRead, D. J. (1996). The structure and function of the ericoid mycorrhizal root. Annals of Botany, 77(4), 365-374.
dc.sourceRead, D. J., Leake, J. R., and Perez‐Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243–1263. https ://doi.org/10.1139/b04-123
dc.sourceRestrepo, J. O. V., Maniguaje, N. L., and Duque, Á. J. (2012). Diversidad y dinámica de un bosque subandino de altitud en la región norte de los Andes colombianos. Revista de Biología Tropical, 60(2), 943-952
dc.sourceRodríguez, N., Armenteras, D., Morales, M., and Romero, M. (2004). Ecosistemas de los Andes colombianos (No. 333.950986 E19).
dc.sourceSiavosh, S., Rivera, J. M., and Gómez, M. E. (2000). Impacto de sistemas de ganadería sobre las características físicas, químicas y biológicas de suelos en los Andes de Colombia. Agroforestería para la Producción Animal en Latinoamérica. FAO-CIPAV, Cali, Colombia, 77-95.
dc.sourceSmith, S. E., and Read, D. J. (2008). Mycorrhizal symbiosis. London, UK: Academic Press.
dc.sourceSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D., Reich, P. B., ... and Herault, B. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404.
dc.sourceTedersoo, L., and Brundrett, M. C. (2017). Evolution of ectomycorrhizal symbiosis in plants. In Biogeography of mycorrhizal symbiosis (pp. 407-467). Springer, Cham.
dc.sourcevan de Weg, M. J., Meir, P., Grace, J., and Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243-254
dc.sourceVan Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf‐Engel, R., Boller, T., … Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69. https ://doi.org/10.1038/23932.
dc.sourceVeblen, T. T., Young, K. R., and Orme, A. R. (Eds.). (2015). The physical geography of South America. Oxford University Press.
dc.sourceVeresoglou, S. D., Chen, B., and Rillig, M. C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46, 53–62. https ://doi.org/10.1016/j.soilb io.2011.11.018.
dc.sourceVetrovsky, T., Morais, D., Kohout, P., Lepinay, C., Gallardo, C. A., Holla, S. A., ... and Human, Z. R. (2020). GlobalFungi: Global database of fungal records from high-throughput-sequencing metabarcoding studies. bioRxiv.
dc.sourceWang, B., and Qiu, Y.-L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5), 299–363. doi:10.1007/s00572-005-0033-6; Harley, J. L., and Harley, E. L. (1987). A check-list of mycorrhiza in the British flora.
dc.sourceXu, H., Detto, M., Fang, S., Chazdon, R. L., Li, Y., Hau, B. C., ... and Uriarte, M. (2020). Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications biology, 3(1), 1-8.
dc.sourcePhillips, R. P., Brzostek, E., and Midgley, M. G. (2013). The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist, 199(1), 41-51.
dc.sourceUnger, M., Homeier, J., and Leuschner, C. (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263-274.
dc.sourceXu, H., Detto, M., Li, Y., Li, Y., He, F., and Fang, S. (2019). Do N‐fixing legumes promote neighbouring diversity in the tropics? Journal of Ecology, 107(1), 229-239.
dc.sourceGrizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., and Cresson, R. (2017). Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1), 1-8.
dc.sourceRangel, J. O. (2005). La biodiversidad de Colombia. Palimpsestvs, (5)
dc.sourcede Oliveira, R. A., Ramos, M. M., and de Aquino, L. A. (2015). Irrigation management. In Sugarcane (pp. 161-183). Academic Press.
dc.sourceSoudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., ... and Tedersoo, L. (2020). FungalRoot: global online database of plant mycorrhizal associations. New Phytologist
dc.sourceNasto, M. K., Alvarez‐Clare, S., Lekberg, Y., Sullivan, B. W., Townsend, A. R., and Cleveland, C. C. (2014). Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters, 17(10), 1282-1289
dc.sourceSmith, S. E., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual review of plant biology, 62, 227-250
dc.sourceGavito, M. E., and Azcón–Aguilar, C. (2012). Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agricultural and Food Science, 21(1), 2-11
dc.sourceGonzález‐Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., and Yepes, A.(2020) The legacy of biogeographic history on the composition and structure of Andean forests. Ecology
dc.sourceGonzález, C., Jarvis, A., and Palacio, J. D. (2006). Biogeography of the Colombian oak, Quercus humboldtii Bonpl: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad del Cauca. Popayán.
dc.sourceJansa, J., Finlay, R., Wallander, H., Smith, F. A., and Smith, S. E. (2011). Role of mycorrhizal symbioses in phosphorus cycling. In Phosphorus in action (pp. 137-168). Springer, Berlin, Heidelberg.
dc.sourcePhillips, R. P., Brzostek, E., and Midgley, M. G. (2013). The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist, 199(1), 41-51
dc.sourceRead, D. J., and Perez‐Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance?. New phytologist, 157(3), 475-492
dc.sourceMarian, C. O., Krebs, S. L., and Arora, R. (2004). Dehydrin variability among rhododendron species: a 25‐kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytologist, 161(3), 773-780.
dc.sourceWalker, M. D., Walker, D. A., and Auerbach, N. A. (1994). Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska. Journal of Vegetation Science, 5(6), 843-866
dc.sourceGeml, J. (2017). Altitudinal gradients in mycorrhizal symbioses. In Biogeography of mycorrhizal symbiosis (pp. 107-123). Springer, Cham.
dc.sourceAikio, S., and Ruotsalainen, A. (2002). The modelled growth of mycorrhizal and non-mycorrhizal plants under constant versus variable soil nutrient concentration. Mycorrhiza, 12(5), 257-261
dc.sourceCraine, J. M., Elmore, A. J., Aidar, M. P., Bustamante, M., Dawson, T. E., Hobbie, E. A., and Nardoto, G. B. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980-992
dc.sourceZhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D., ... and Voordeckers, J. W. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature communications, 7(1), 1-10
dc.sourceBarron, A. R., Purves, D. W., and Hedin, L. O. (2011). Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia, 165(2), 511-520
dc.sourceMenge, D. N., Levin, S. A., and Hedin, L. O. (2009). Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. The American Naturalist, 174(4), 465-477
dc.sourceXu, H., Detto, M., Li, Y., Li, Y., He, F., and Fang, S. (2019). Do N‐fixing legumes promote neighbouring diversity in the tropics?. Journal of Ecology, 107(1), 229-239.
dc.sourceXu, H., Detto, M., Fang, S., Chazdon, R. L., Li, Y., Hau, B. C., ... and Uriarte, M. (2020). Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications biology, 3(1), 1-8
dc.sourceAyram, C. A. C., Rothlisberger, A. E., Timote, J. J. D., Buritica, S. R., Ramirez, W., and Corzo, G. (2020). Spatiotemporal Evaluation of The Human Footprint in Colombia: Four Decades of Anthropic Impact in Highly Biodiverse Ecosystems. bioRxiv
dc.sourceDelavaux, C. S., Weigelt, P., Dawson, W., Duchicela, J., Essl, F., van Kleunen, M., ... and Winter, M. (2019). Mycorrhizal fungi influence global plant biogeography. Nature ecology and evolution, 3(3), 424-429
dc.sourceLehto, T., and Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 21(2), 71-90
dc.sourceVan Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., ... & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706), 69-72.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectBiogeografía
dc.subjectMicorrizas
dc.subjectAndes colombianos
dc.subjectGradiente altitudinal
dc.subjectDiversidad
dc.titleDiversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución