dc.contributorCifuentes García, Carlos Andrés
dc.contributorMúnera Ramirez, Marcela Cristina
dc.contributorGiBiome
dc.creatorTovar Suárez, Bryan Nicolás
dc.date.accessioned2021-06-02T02:00:08Z
dc.date.accessioned2022-09-22T14:39:21Z
dc.date.available2021-06-02T02:00:08Z
dc.date.available2022-09-22T14:39:21Z
dc.date.created2021-06-02T02:00:08Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/31559
dc.identifierhttps://doi.org/10.48713/10336_31559
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3440921
dc.description.abstractStroke is one of the leading causes of motor and cognitive disability in the world. Despite the existence of various conventional therapies that seek to maximize the recovery of patients, Brain-Computer Interfaces (BCI) are tools to integrate the central nervous system in the rehabilitation process to empower the recovery. Technologies based on the acquisition of EEG signals seeking to complement existing therapies with exoskeletons present enormous potential. The T-FLEX is an active ankle orthosis that has shown efficiency in recovering patients with disabilities in the lower limb. This project presents the preliminary integration of T-FLEX and a BCI system based on EEG signals with validation in post-stroke patients. Initially, a theoretical framework based on Motor Imagination (MI) principles were implemented, specifically in the Event-Related Synchronization (ERS) of the beta frequency band in the central zone of the cerebral cortex. In this sense, a local server was designed, which worked as a communication bridge between the designed BCI and the T-FLEX device using different data sending protocols. In the experimental study, the BCI system was analyzed with five post-stroke patients with external stimuli facilitating the MI generation. These were visual and visual with tactile stimuli. Significant differences were found in the accuracy, which concluded greater accuracy in the ability of the BCI to detect MI with visual and tactile stimulation with an increase of 13.3% to 20%. Significant differences were found in the Power Spectral Density (PSD) related to the tests performed with visual and tactile stimulation in the Cz, C2 and Cpz channels vs. the therapy mode of the T-FLEX device, in which the patient was not required to generate MI. In the same way, the subjective perception of the patients was evaluated through a QUEST 2.0 questionnaire. The results showed that the preliminary integration of this technology is viable for future studies in the medium and long term.
dc.languageeng
dc.publisherUniversidad del Rosario
dc.publisherIngeniería Biomédica
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceR. Bene, N. Beck, B. Vajda, S. Popovic, K. COSIC, and V. Demarin, “Interface providers in stroke neurorehabilitation,” Periodicum biologorum, vol. 114, no. 3, pp. 403–407, 2012.
dc.sourceK. K. Ang and C. Guan, “Brain-computer interface in stroke rehabilitation,” Computing Science and Enginering, 2013.
dc.sourceS. Whitehead and E. Baalbergen, “Post-stroke rehabilitation,” South African Medical Journal, vol. 109, no. 2, pp. 81–83, 2019.
dc.sourceH. Yagura, I. Miyai, Y. Seike, T. Suzuki, and T. Yanagihara, “Benefit of inpatient multidisciplinary rehabilitation up to 1 year after stroke,” Archives of physical medicine and rehabilitation, vol. 84, no. 11, pp. 1687–1691, 2003.
dc.sourceA. Zeiaee, R. Soltani-Zarrin, R. Langari, and R. Tafreshi, “Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients,” in 2017 International Conference on Rehabilitation Robotics (ICORR), IEEE, 2017, pp. 759–764.
dc.sourceY. He, D. Eguren, J. M. Azorın, R. G. Grossman, T. P. Luu, and J. L. Contreras- Vidal, “Brain–machine interfaces for controlling lower-limb powered robotic systems,” Journal of neural engineering, vol. 15, no. 2, p. 021 004, 2018.
dc.sourceC. Wang, K. S. Phua, K. K. Ang, C. Guan, H. Zhang, R. Lin, K. S. G. Chua, B. T. Ang, and C. W. K. Kuah, “A feasibility study of non-invasive motor-imagery bci-based robotic rehabilitation for stroke patients,” in 2009 4th International IEEE/EMBS Conference on Neural Engineering, IEEE, 2009, pp. 271–274.
dc.sourceM. Ortiz, L. Ferrero, E. Iáñez, J. M. Azorın, and J. L. Contreras-Vidal, “Sensory integration in human movement: A new brain-machine interface based on gamma band and attention level for controlling a lower-limb exoskeleton,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2020.
dc.sourceE. Bobrova, V. Reshetnikova, A. Frolov, and Y. Gerasimenko, “Use of imaginary lower limb movements to control brain–computer interface systems,” Neuroscience and Behavioral Physiology, vol. 50, no. 5, pp. 585–592, 2020.
dc.sourceW.Wang, J. L. Collinger, M. A. Perez, E. C. Tyler-Kabara, L. G. Cohen, N. Birbaumer, S. W. Brose, A. B. Schwartz, M. L. Boninger, and D. J. Weber, “Neural interface technology for rehabilitation: Exploiting and promoting neuroplasticity,” Physical Medicine and Rehabilitation Clinics, vol. 21, no. 1, pp. 157–178, 2010.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectDiseño de Interfaz cerebro-computadora para Ortesis Activa de Tobillo
dc.subjectExoesqueleto robótico T-FLEX con Interfaz cerebro-computadora
dc.subjectDiseño de Interfaz neuronal directa para Ortesis Activa de Tobillo
dc.subjectInterfaz cerebro-ordenador para Ortesis Activa de Tobillo
dc.subjectTecnologías basadas en procesamiento de señales EEG para prótesis de tobillo
dc.subjectOrtesis Activa de Tobillo movida por señales encefalograficas
dc.subjectTecnología medica
dc.titleIntegration of a BCI system for the control of the T-FLEX Ankle Exoskeleton
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución